Duplicate Labels#

Index objects are not required to be unique; you can have duplicate row or column labels. This may be a bit confusing at first. If you’re familiar with SQL, you know that row labels are similar to a primary key on a table, and you would never want duplicates in a SQL table. But one of pandas’ roles is to clean messy, real-world data before it goes to some downstream system. And real-world data has duplicates, even in fields that are supposed to be unique.

This section describes how duplicate labels change the behavior of certain operations, and how prevent duplicates from arising during operations, or to detect them if they do.

In [1]: import pandas as pd

In [2]: import numpy as np

Consequences of Duplicate Labels#

Some pandas methods (Series.reindex() for example) just don’t work with duplicates present. The output can’t be determined, and so pandas raises.

In [3]: s1 = pd.Series([0, 1, 2], index=["a", "b", "b"])

In [4]: s1.reindex(["a", "b", "c"])
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[4], line 1
----> 1 s1.reindex(["a", "b", "c"])

File ~/work/pandas/pandas/pandas/core/series.py:5397, in Series.reindex(self, index, axis, method, copy, level, fill_value, limit, tolerance)
   5171 def reindex(  # type: ignore[override]
   5172     self,
   5173     index=None,
   (...)   5181     tolerance=None,
   5182 ) -> Series:
   5183     """
   5184     Conform Series to new index with optional filling logic.
   5185 
   (...)   5395     See the :ref:`user guide <basics.reindexing>` for more.
   5396     """
-> 5397     return super().reindex(
   5398         index=index,
   5399         method=method,
   5400         level=level,
   5401         fill_value=fill_value,
   5402         limit=limit,
   5403         tolerance=tolerance,
   5404         copy=copy,
   5405     )

File ~/work/pandas/pandas/pandas/core/generic.py:5432, in NDFrame.reindex(self, labels, index, columns, axis, method, copy, level, fill_value, limit, tolerance)
   5429     return self._reindex_multi(axes, fill_value)
   5431 # perform the reindex on the axes
-> 5432 return self._reindex_axes(
   5433     axes, level, limit, tolerance, method, fill_value
   5434 ).__finalize__(self, method="reindex")

File ~/work/pandas/pandas/pandas/core/generic.py:5454, in NDFrame._reindex_axes(self, axes, level, limit, tolerance, method, fill_value)
   5451     continue
   5453 ax = self._get_axis(a)
-> 5454 new_index, indexer = ax.reindex(
   5455     labels, level=level, limit=limit, tolerance=tolerance, method=method
   5456 )
   5458 axis = self._get_axis_number(a)
   5459 obj = obj._reindex_with_indexers(
   5460     {axis: [new_index, indexer]},
   5461     fill_value=fill_value,
   5462     allow_dups=False,
   5463 )

File ~/work/pandas/pandas/pandas/core/indexes/base.py:4249, in Index.reindex(self, target, method, level, limit, tolerance)
   4246     raise ValueError("cannot handle a non-unique multi-index!")
   4247 elif not self.is_unique:
   4248     # GH#42568
-> 4249     raise ValueError("cannot reindex on an axis with duplicate labels")
   4250 else:
   4251     indexer, _ = self.get_indexer_non_unique(target)

ValueError: cannot reindex on an axis with duplicate labels

Other methods, like indexing, can give very surprising results. Typically indexing with a scalar will reduce dimensionality. Slicing a DataFrame with a scalar will return a Series. Slicing a Series with a scalar will return a scalar. But with duplicates, this isn’t the case.

In [5]: df1 = pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "A", "B"])

In [6]: df1
Out[6]: 
   A  A  B
0  0  1  2
1  3  4  5

We have duplicates in the columns. If we slice 'B', we get back a Series

In [7]: df1["B"]  # a series
Out[7]: 
0    2
1    5
Name: B, dtype: int64

But slicing 'A' returns a DataFrame

In [8]: df1["A"]  # a DataFrame
Out[8]: 
   A  A
0  0  1
1  3  4

This applies to row labels as well

In [9]: df2 = pd.DataFrame({"A": [0, 1, 2]}, index=["a", "a", "b"])

In [10]: df2
Out[10]: 
   A
a  0
a  1
b  2

In [11]: df2.loc["b", "A"]  # a scalar
Out[11]: np.int64(2)

In [12]: df2.loc["a", "A"]  # a Series
Out[12]: 
a    0
a    1
Name: A, dtype: int64

Duplicate Label Detection#

You can check whether an Index (storing the row or column labels) is unique with Index.is_unique:

In [13]: df2
Out[13]: 
   A
a  0
a  1
b  2

In [14]: df2.index.is_unique
Out[14]: False

In [15]: df2.columns.is_unique
Out[15]: True

Note

Checking whether an index is unique is somewhat expensive for large datasets. pandas does cache this result, so re-checking on the same index is very fast.

Index.duplicated() will return a boolean ndarray indicating whether a label is repeated.

In [16]: df2.index.duplicated()
Out[16]: array([False,  True, False])

Which can be used as a boolean filter to drop duplicate rows.

In [17]: df2.loc[~df2.index.duplicated(), :]
Out[17]: 
   A
a  0
b  2

If you need additional logic to handle duplicate labels, rather than just dropping the repeats, using groupby() on the index is a common trick. For example, we’ll resolve duplicates by taking the average of all rows with the same label.

In [18]: df2.groupby(level=0).mean()
Out[18]: 
     A
a  0.5
b  2.0

Disallowing Duplicate Labels#

As noted above, handling duplicates is an important feature when reading in raw data. That said, you may want to avoid introducing duplicates as part of a data processing pipeline (from methods like pandas.concat(), rename(), etc.). Both Series and DataFrame disallow duplicate labels by calling .set_flags(allows_duplicate_labels=False). (the default is to allow them). If there are duplicate labels, an exception will be raised.

In [19]: pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[19], line 1
----> 1 pd.Series([0, 1, 2], index=["a", "b", "b"]).set_flags(allows_duplicate_labels=False)

File ~/work/pandas/pandas/pandas/core/generic.py:470, in NDFrame.set_flags(self, copy, allows_duplicate_labels)
    468 df = self.copy(deep=False)
    469 if allows_duplicate_labels is not None:
--> 470     df.flags["allows_duplicate_labels"] = allows_duplicate_labels
    471 return df

File ~/work/pandas/pandas/pandas/core/flags.py:121, in Flags.__setitem__(self, key, value)
    119 if key not in self._keys:
    120     raise ValueError(f"Unknown flag {key}. Must be one of {self._keys}")
--> 121 setattr(self, key, value)

File ~/work/pandas/pandas/pandas/core/flags.py:108, in Flags.allows_duplicate_labels(self, value)
    106 if not value:
    107     for ax in obj.axes:
--> 108         ax._maybe_check_unique()
    110 self._allows_duplicate_labels = value

File ~/work/pandas/pandas/pandas/core/indexes/base.py:713, in Index._maybe_check_unique(self)
    710 duplicates = self._format_duplicate_message()
    711 msg += f"\n{duplicates}"
--> 713 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label          
b        [1, 2]

This applies to both row and column labels for a DataFrame

In [20]: pd.DataFrame([[0, 1, 2], [3, 4, 5]], columns=["A", "B", "C"],).set_flags(
   ....:     allows_duplicate_labels=False
   ....: )
   ....: 
Out[20]: 
   A  B  C
0  0  1  2
1  3  4  5

This attribute can be checked or set with allows_duplicate_labels, which indicates whether that object can have duplicate labels.

In [21]: df = pd.DataFrame({"A": [0, 1, 2, 3]}, index=["x", "y", "X", "Y"]).set_flags(
   ....:     allows_duplicate_labels=False
   ....: )
   ....: 

In [22]: df
Out[22]: 
   A
x  0
y  1
X  2
Y  3

In [23]: df.flags.allows_duplicate_labels
Out[23]: False

DataFrame.set_flags() can be used to return a new DataFrame with attributes like allows_duplicate_labels set to some value

In [24]: df2 = df.set_flags(allows_duplicate_labels=True)

In [25]: df2.flags.allows_duplicate_labels
Out[25]: True

The new DataFrame returned is a view on the same data as the old DataFrame. Or the property can just be set directly on the same object

In [26]: df2.flags.allows_duplicate_labels = False

In [27]: df2.flags.allows_duplicate_labels
Out[27]: False

When processing raw, messy data you might initially read in the messy data (which potentially has duplicate labels), deduplicate, and then disallow duplicates going forward, to ensure that your data pipeline doesn’t introduce duplicates.

>>> raw = pd.read_csv("...")
>>> deduplicated = raw.groupby(level=0).first()  # remove duplicates
>>> deduplicated.flags.allows_duplicate_labels = False  # disallow going forward

Setting allows_duplicate_labels=False on a Series or DataFrame with duplicate labels or performing an operation that introduces duplicate labels on a Series or DataFrame that disallows duplicates will raise an errors.DuplicateLabelError.

In [28]: df.rename(str.upper)
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[28], line 1
----> 1 df.rename(str.upper)

File ~/work/pandas/pandas/pandas/core/frame.py:6037, in DataFrame.rename(self, mapper, index, columns, axis, copy, inplace, level, errors)
   5918 """
   5919 Rename columns or index labels.
   5920 
   (...)   6034 4  3  6
   6035 """
   6036 self._check_copy_deprecation(copy)
-> 6037 return super()._rename(
   6038     mapper=mapper,
   6039     index=index,
   6040     columns=columns,
   6041     axis=axis,
   6042     inplace=inplace,
   6043     level=level,
   6044     errors=errors,
   6045 )

File ~/work/pandas/pandas/pandas/core/generic.py:1075, in NDFrame._rename(self, mapper, index, columns, axis, inplace, level, errors)
   1073     return None
   1074 else:
-> 1075     return result.__finalize__(self, method="rename")

File ~/work/pandas/pandas/pandas/core/generic.py:6124, in NDFrame.__finalize__(self, other, method, **kwargs)
   6118 if other.attrs:
   6119     # We want attrs propagation to have minimal performance
   6120     # impact if attrs are not used; i.e. attrs is an empty dict.
   6121     # One could make the deepcopy unconditionally, but a deepcopy
   6122     # of an empty dict is 50x more expensive than the empty check.
   6123     self.attrs = deepcopy(other.attrs)
-> 6124 self.flags.allows_duplicate_labels = (
   6125     self.flags.allows_duplicate_labels
   6126     and other.flags.allows_duplicate_labels
   6127 )
   6128 # For subclasses using _metadata.
   6129 for name in set(self._metadata) & set(other._metadata):

File ~/work/pandas/pandas/pandas/core/flags.py:108, in Flags.allows_duplicate_labels(self, value)
    106 if not value:
    107     for ax in obj.axes:
--> 108         ax._maybe_check_unique()
    110 self._allows_duplicate_labels = value

File ~/work/pandas/pandas/pandas/core/indexes/base.py:713, in Index._maybe_check_unique(self)
    710 duplicates = self._format_duplicate_message()
    711 msg += f"\n{duplicates}"
--> 713 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label          
X        [0, 2]
Y        [1, 3]

This error message contains the labels that are duplicated, and the numeric positions of all the duplicates (including the “original”) in the Series or DataFrame

Duplicate Label Propagation#

In general, disallowing duplicates is “sticky”. It’s preserved through operations.

In [29]: s1 = pd.Series(0, index=["a", "b"]).set_flags(allows_duplicate_labels=False)

In [30]: s1
Out[30]: 
a    0
b    0
dtype: int64

In [31]: s1.head().rename({"a": "b"})
---------------------------------------------------------------------------
DuplicateLabelError                       Traceback (most recent call last)
Cell In[31], line 1
----> 1 s1.head().rename({"a": "b"})

File ~/work/pandas/pandas/pandas/core/series.py:5125, in Series.rename(self, index, axis, copy, inplace, level, errors)
   5118     axis = self._get_axis_number(axis)
   5120 if callable(index) or is_dict_like(index):
   5121     # error: Argument 1 to "_rename" of "NDFrame" has incompatible
   5122     # type "Union[Union[Mapping[Any, Hashable], Callable[[Any],
   5123     # Hashable]], Hashable, None]"; expected "Union[Mapping[Any,
   5124     # Hashable], Callable[[Any], Hashable], None]"
-> 5125     return super()._rename(
   5126         index,  # type: ignore[arg-type]
   5127         inplace=inplace,
   5128         level=level,
   5129         errors=errors,
   5130     )
   5131 else:
   5132     return self._set_name(index, inplace=inplace)

File ~/work/pandas/pandas/pandas/core/generic.py:1075, in NDFrame._rename(self, mapper, index, columns, axis, inplace, level, errors)
   1073     return None
   1074 else:
-> 1075     return result.__finalize__(self, method="rename")

File ~/work/pandas/pandas/pandas/core/generic.py:6124, in NDFrame.__finalize__(self, other, method, **kwargs)
   6118 if other.attrs:
   6119     # We want attrs propagation to have minimal performance
   6120     # impact if attrs are not used; i.e. attrs is an empty dict.
   6121     # One could make the deepcopy unconditionally, but a deepcopy
   6122     # of an empty dict is 50x more expensive than the empty check.
   6123     self.attrs = deepcopy(other.attrs)
-> 6124 self.flags.allows_duplicate_labels = (
   6125     self.flags.allows_duplicate_labels
   6126     and other.flags.allows_duplicate_labels
   6127 )
   6128 # For subclasses using _metadata.
   6129 for name in set(self._metadata) & set(other._metadata):

File ~/work/pandas/pandas/pandas/core/flags.py:108, in Flags.allows_duplicate_labels(self, value)
    106 if not value:
    107     for ax in obj.axes:
--> 108         ax._maybe_check_unique()
    110 self._allows_duplicate_labels = value

File ~/work/pandas/pandas/pandas/core/indexes/base.py:713, in Index._maybe_check_unique(self)
    710 duplicates = self._format_duplicate_message()
    711 msg += f"\n{duplicates}"
--> 713 raise DuplicateLabelError(msg)

DuplicateLabelError: Index has duplicates.
      positions
label          
b        [0, 1]

Warning

This is an experimental feature. Currently, many methods fail to propagate the allows_duplicate_labels value. In future versions it is expected that every method taking or returning one or more DataFrame or Series objects will propagate allows_duplicate_labels.