pandas.DataFrame.to_numpy#
- DataFrame.to_numpy(dtype=None, copy=False, na_value=_NoDefault.no_default)[source]#
- Convert the DataFrame to a NumPy array. - By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are - float16and- float32, the results dtype will be- float32. This may require copying data and coercing values, which may be expensive.- Parameters
- dtypestr or numpy.dtype, optional
- The dtype to pass to - numpy.asarray().
- copybool, default False
- Whether to ensure that the returned value is not a view on another array. Note that - copy=Falsedoes not ensure that- to_numpy()is no-copy. Rather,- copy=Trueensure that a copy is made, even if not strictly necessary.
- na_valueAny, optional
- The value to use for missing values. The default value depends on dtype and the dtypes of the DataFrame columns. - New in version 1.1.0. 
 
- Returns
- numpy.ndarray
 
 - See also - Series.to_numpy
- Similar method for Series. 
 - Examples - >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) - With heterogeneous data, the lowest common type will have to be used. - >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]]) - For a mix of numeric and non-numeric types, the output array will have object dtype. - >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object)