pandas.Series.__array__#
- Series.__array__(dtype=None)[source]#
- Return the values as a NumPy array. - Users should not call this directly. Rather, it is invoked by - numpy.array()and- numpy.asarray().- Parameters:
- dtypestr or numpy.dtype, optional
- The dtype to use for the resulting NumPy array. By default, the dtype is inferred from the data. 
 
- Returns:
- numpy.ndarray
- The values in the series converted to a - numpy.ndarraywith the specified dtype.
 
 - See also - array
- Create a new array from data. 
- Series.array
- Zero-copy view to the array backing the Series. 
- Series.to_numpy
- Series method for similar behavior. 
 - Examples - >>> ser = pd.Series([1, 2, 3]) >>> np.asarray(ser) array([1, 2, 3]) - For timezone-aware data, the timezones may be retained with - dtype='object'- >>> tzser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) >>> np.asarray(tzser, dtype="object") array([Timestamp('2000-01-01 00:00:00+0100', tz='CET'), Timestamp('2000-01-02 00:00:00+0100', tz='CET')], dtype=object) - Or the values may be localized to UTC and the tzinfo discarded with - dtype='datetime64[ns]'- >>> np.asarray(tzser, dtype="datetime64[ns]") array(['1999-12-31T23:00:00.000000000', ...], dtype='datetime64[ns]')