pandas.Series.std#
- Series.std(axis=None, skipna=True, ddof=1, numeric_only=False, **kwargs)[source]#
- Return sample standard deviation over requested axis. - Normalized by N-1 by default. This can be changed using the ddof argument. - Parameters:
- axis{index (0)}
- For Series this parameter is unused and defaults to 0. 
- skipnabool, default True
- Exclude NA/null values. If an entire row/column is NA, the result will be NA. 
- ddofint, default 1
- Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. 
- numeric_onlybool, default False
- Include only float, int, boolean columns. Not implemented for Series. 
 
- Returns:
- scalar or Series (if level specified)
 
 - Notes - To have the same behaviour as numpy.std, use ddof=0 (instead of the default ddof=1) - Examples - >>> df = pd.DataFrame({'person_id': [0, 1, 2, 3], ... 'age': [21, 25, 62, 43], ... 'height': [1.61, 1.87, 1.49, 2.01]} ... ).set_index('person_id') >>> df age height person_id 0 21 1.61 1 25 1.87 2 62 1.49 3 43 2.01 - The standard deviation of the columns can be found as follows: - >>> df.std() age 18.786076 height 0.237417 dtype: float64 - Alternatively, ddof=0 can be set to normalize by N instead of N-1: - >>> df.std(ddof=0) age 16.269219 height 0.205609 dtype: float64