pandas.Series.mask#
- Series.mask(cond, other=_NoDefault.no_default, *, inplace=False, axis=None, level=None)[source]#
- Replace values where the condition is True. - Parameters:
- condbool Series/DataFrame, array-like, or callable
- Where cond is False, keep the original value. Where True, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it). 
- otherscalar, Series/DataFrame, or callable
- Entries where cond is True are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it). If not specified, entries will be filled with the corresponding NULL value ( - np.nanfor numpy dtypes,- pd.NAfor extension dtypes).
- inplacebool, default False
- Whether to perform the operation in place on the data. 
- axisint, default None
- Alignment axis if needed. For Series this parameter is unused and defaults to 0. 
- levelint, default None
- Alignment level if needed. 
 
- Returns:
- Same type as caller or None if inplace=True.
 
- Same type as caller or None if 
 - See also - DataFrame.where()
- Return an object of same shape as self. 
 - Notes - The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if - condis- Falsethe element is used; otherwise the corresponding element from the DataFrame- otheris used. If the axis of- otherdoes not align with axis of- condSeries/DataFrame, the misaligned index positions will be filled with True.- The signature for - DataFrame.where()differs from- numpy.where(). Roughly- df1.where(m, df2)is equivalent to- np.where(m, df1, df2).- For further details and examples see the - maskdocumentation in indexing.- The dtype of the object takes precedence. The fill value is casted to the object’s dtype, if this can be done losslessly. - Examples - >>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 dtype: float64 >>> s.mask(s > 0) 0 0.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 - >>> s = pd.Series(range(5)) >>> t = pd.Series([True, False]) >>> s.where(t, 99) 0 0 1 99 2 99 3 99 4 99 dtype: int64 >>> s.mask(t, 99) 0 99 1 1 2 99 3 99 4 99 dtype: int64 - >>> s.where(s > 1, 10) 0 10 1 10 2 2 3 3 4 4 dtype: int64 >>> s.mask(s > 1, 10) 0 0 1 1 2 10 3 10 4 10 dtype: int64 - >>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> df A B 0 0 1 1 2 3 2 4 5 3 6 7 4 8 9 >>> m = df % 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True