pandas.Series.drop_duplicates#
- Series.drop_duplicates(*, keep='first', inplace=False, ignore_index=False)[source]#
- Return Series with duplicate values removed. - Parameters:
- keep{‘first’, ‘last’, False}, default ‘first’
- Method to handle dropping duplicates: - ‘first’ : Drop duplicates except for the first occurrence. 
- ‘last’ : Drop duplicates except for the last occurrence. 
- False: Drop all duplicates.
 
- inplacebool, default False
- If - True, performs operation inplace and returns None.
- ignore_indexbool, default False
- If - True, the resulting axis will be labeled 0, 1, …, n - 1.- New in version 2.0.0. 
 
- keep{‘first’, ‘last’, 
- Returns:
- Series or None
- Series with duplicates dropped or None if - inplace=True.
 
 - See also - Index.drop_duplicates
- Equivalent method on Index. 
- DataFrame.drop_duplicates
- Equivalent method on DataFrame. 
- Series.duplicated
- Related method on Series, indicating duplicate Series values. 
- Series.unique
- Return unique values as an array. 
 - Examples - Generate a Series with duplicated entries. - >>> s = pd.Series(['llama', 'cow', 'llama', 'beetle', 'llama', 'hippo'], ... name='animal') >>> s 0 llama 1 cow 2 llama 3 beetle 4 llama 5 hippo Name: animal, dtype: object - With the ‘keep’ parameter, the selection behaviour of duplicated values can be changed. The value ‘first’ keeps the first occurrence for each set of duplicated entries. The default value of keep is ‘first’. - >>> s.drop_duplicates() 0 llama 1 cow 3 beetle 5 hippo Name: animal, dtype: object - The value ‘last’ for parameter ‘keep’ keeps the last occurrence for each set of duplicated entries. - >>> s.drop_duplicates(keep='last') 1 cow 3 beetle 4 llama 5 hippo Name: animal, dtype: object - The value - Falsefor parameter ‘keep’ discards all sets of duplicated entries.- >>> s.drop_duplicates(keep=False) 1 cow 3 beetle 5 hippo Name: animal, dtype: object