pandas.Series.pipe#
- Series.pipe(func, *args, **kwargs)[source]#
- Apply chainable functions that expect Series or DataFrames. - Parameters:
- funcfunction
- Function to apply to the Series/DataFrame. - args, and- kwargsare passed into- func. Alternatively a- (callable, data_keyword)tuple where- data_keywordis a string indicating the keyword of- callablethat expects the Series/DataFrame.
- *argsiterable, optional
- Positional arguments passed into - func.
- **kwargsmapping, optional
- A dictionary of keyword arguments passed into - func.
 
- Returns:
- the return type of func.
 
- the return type of 
 - See also - DataFrame.apply
- Apply a function along input axis of DataFrame. 
- DataFrame.map
- Apply a function elementwise on a whole DataFrame. 
- Series.map
- Apply a mapping correspondence on a - Series.
 - Notes - Use - .pipewhen chaining together functions that expect Series, DataFrames or GroupBy objects.- Examples - Constructing a income DataFrame from a dictionary. - >>> data = [[8000, 1000], [9500, np.nan], [5000, 2000]] >>> df = pd.DataFrame(data, columns=['Salary', 'Others']) >>> df Salary Others 0 8000 1000.0 1 9500 NaN 2 5000 2000.0 - Functions that perform tax reductions on an income DataFrame. - >>> def subtract_federal_tax(df): ... return df * 0.9 >>> def subtract_state_tax(df, rate): ... return df * (1 - rate) >>> def subtract_national_insurance(df, rate, rate_increase): ... new_rate = rate + rate_increase ... return df * (1 - new_rate) - Instead of writing - >>> subtract_national_insurance( ... subtract_state_tax(subtract_federal_tax(df), rate=0.12), ... rate=0.05, ... rate_increase=0.02) - You can write - >>> ( ... df.pipe(subtract_federal_tax) ... .pipe(subtract_state_tax, rate=0.12) ... .pipe(subtract_national_insurance, rate=0.05, rate_increase=0.02) ... ) Salary Others 0 5892.48 736.56 1 6997.32 NaN 2 3682.80 1473.12 - If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose - national_insurancetakes its data as- dfin the second argument:- >>> def subtract_national_insurance(rate, df, rate_increase): ... new_rate = rate + rate_increase ... return df * (1 - new_rate) >>> ( ... df.pipe(subtract_federal_tax) ... .pipe(subtract_state_tax, rate=0.12) ... .pipe( ... (subtract_national_insurance, 'df'), ... rate=0.05, ... rate_increase=0.02 ... ) ... ) Salary Others 0 5892.48 736.56 1 6997.32 NaN 2 3682.80 1473.12