pandas.io.formats.style.Styler.format_index#
- Styler.format_index(formatter=None, axis=0, level=None, na_rep=None, precision=None, decimal='.', thousands=None, escape=None, hyperlinks=None)[source]#
Format the text display value of index labels or column headers.
Added in version 1.4.0.
- Parameters:
- formatterstr, callable, dict or None
Object to define how values are displayed. See notes.
- axis{0, “index”, 1, “columns”}
Whether to apply the formatter to the index or column headers.
- levelint, str, list
The level(s) over which to apply the generic formatter.
- na_repstr, optional
Representation for missing values. If
na_rep
is None, no special formatting is applied.- precisionint, optional
Floating point precision to use for display purposes, if not determined by the specified
formatter
.- decimalstr, default “.”
Character used as decimal separator for floats, complex and integers.
- thousandsstr, optional, default None
Character used as thousands separator for floats, complex and integers.
- escapestr, optional
Use ‘html’ to replace the characters
&
,<
,>
,'
, and"
in cell display string with HTML-safe sequences. Use ‘latex’ to replace the characters&
,%
,$
,#
,_
,{
,}
,~
,^
, and\
in the cell display string with LaTeX-safe sequences. Escaping is done beforeformatter
.- hyperlinks{“html”, “latex”}, optional
Convert string patterns containing https://, http://, ftp:// or www. to HTML <a> tags as clickable URL hyperlinks if “html”, or LaTeX href commands if “latex”.
- Returns:
- Styler
Returns itself for chaining.
See also
Styler.format
Format the text display value of data cells.
Notes
This method assigns a formatting function,
formatter
, to each level label in the DataFrame’s index or column headers. Ifformatter
isNone
, then the default formatter is used. If a callable then that function should take a label value as input and return a displayable representation, such as a string. Ifformatter
is given as a string this is assumed to be a valid Python format specification and is wrapped to a callable asstring.format(x)
. If adict
is given, keys should correspond to MultiIndex level numbers or names, and values should be string or callable, as above.The default formatter currently expresses floats and complex numbers with the pandas display precision unless using the
precision
argument here. The default formatter does not adjust the representation of missing values unless thena_rep
argument is used.The
level
argument defines which levels of a MultiIndex to apply the method to. If theformatter
argument is given in dict form but does not include all levels within the level argument then these unspecified levels will have the default formatter applied. Any levels in the formatter dict specifically excluded from the level argument will be ignored.When using a
formatter
string the dtypes must be compatible, otherwise a ValueError will be raised.Warning
Styler.format_index is ignored when using the output format Styler.to_excel, since Excel and Python have inherently different formatting structures. However, it is possible to use the number-format pseudo CSS attribute to force Excel permissible formatting. See documentation for Styler.format.
Examples
Using
na_rep
andprecision
with the defaultformatter
>>> df = pd.DataFrame([[1, 2, 3]], columns=[2.0, np.nan, 4.0]) >>> df.style.format_index(axis=1, na_rep='MISS', precision=3) 2.000 MISS 4.000 0 1 2 3
Using a
formatter
specification on consistent dtypes in a level>>> df.style.format_index('{:.2f}', axis=1, na_rep='MISS') 2.00 MISS 4.00 0 1 2 3
Using the default
formatter
for unspecified levels>>> df = pd.DataFrame([[1, 2, 3]], ... columns=pd.MultiIndex.from_arrays( ... [["a", "a", "b"], [2, np.nan, 4]])) >>> df.style.format_index({0: lambda v: v.upper()}, axis=1, precision=1) ... A B 2.0 nan 4.0 0 1 2 3
Using a callable
formatter
function.>>> func = lambda s: 'STRING' if isinstance(s, str) else 'FLOAT' >>> df.style.format_index(func, axis=1, na_rep='MISS') ... STRING STRING FLOAT MISS FLOAT 0 1 2 3
Using a
formatter
with HTMLescape
andna_rep
.>>> df = pd.DataFrame([[1, 2, 3]], columns=['"A"', 'A&B', None]) >>> s = df.style.format_index('$ {0}', axis=1, escape="html", na_rep="NA") ... <th .. >$ "A"</th> <th .. >$ A&B</th> <th .. >NA</td> ...
Using a
formatter
with LaTeXescape
.>>> df = pd.DataFrame([[1, 2, 3]], columns=["123", "~", "$%#"]) >>> df.style.format_index("\\textbf{{{}}}", escape="latex", axis=1).to_latex() ... \begin{tabular}{lrrr} {} & {\textbf{123}} & {\textbf{\textasciitilde }} & {\textbf{\$\%\#}} \\ 0 & 1 & 2 & 3 \\ \end{tabular}