Frequently Asked Questions (FAQ)#
DataFrame memory usage#
The memory usage of a DataFrame
(including the index) is shown when calling
the info()
. A configuration option, display.memory_usage
(see the list of options), specifies if the
DataFrame
memory usage will be displayed when invoking the info()
method.
For example, the memory usage of the DataFrame
below is shown
when calling info()
:
In [1]: dtypes = [
...: "int64",
...: "float64",
...: "datetime64[ns]",
...: "timedelta64[ns]",
...: "complex128",
...: "object",
...: "bool",
...: ]
...:
In [2]: n = 5000
In [3]: data = {t: np.random.randint(100, size=n).astype(t) for t in dtypes}
In [4]: df = pd.DataFrame(data)
In [5]: df["categorical"] = df["object"].astype("category")
In [6]: df.info()
<class 'pandas.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 int64 5000 non-null int64
1 float64 5000 non-null float64
2 datetime64[ns] 5000 non-null datetime64[ns]
3 timedelta64[ns] 5000 non-null timedelta64[ns]
4 complex128 5000 non-null complex128
5 object 5000 non-null object
6 bool 5000 non-null bool
7 categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), timedelta64[ns](1)
memory usage: 284.1+ KB
The +
symbol indicates that the true memory usage could be higher, because
pandas does not count the memory used by values in columns with
dtype=object
.
Passing memory_usage='deep'
will enable a more accurate memory usage report,
accounting for the full usage of the contained objects. This is optional
as it can be expensive to do this deeper introspection.
In [7]: df.info(memory_usage="deep")
<class 'pandas.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 int64 5000 non-null int64
1 float64 5000 non-null float64
2 datetime64[ns] 5000 non-null datetime64[ns]
3 timedelta64[ns] 5000 non-null timedelta64[ns]
4 complex128 5000 non-null complex128
5 object 5000 non-null object
6 bool 5000 non-null bool
7 categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), timedelta64[ns](1)
memory usage: 420.6 KB
By default the display option is set to True
but can be explicitly
overridden by passing the memory_usage
argument when invoking info()
.
The memory usage of each column can be found by calling the
memory_usage()
method. This returns a Series
with an index
represented by column names and memory usage of each column shown in bytes. For
the DataFrame
above, the memory usage of each column and the total memory
usage can be found with the memory_usage()
method:
In [8]: df.memory_usage()
Out[8]:
Index 128
int64 40000
float64 40000
datetime64[ns] 40000
timedelta64[ns] 40000
complex128 80000
object 40000
bool 5000
categorical 5800
dtype: int64
# total memory usage of dataframe
In [9]: df.memory_usage().sum()
Out[9]: 290928
By default the memory usage of the DataFrame
index is shown in the
returned Series
, the memory usage of the index can be suppressed by passing
the index=False
argument:
In [10]: df.memory_usage(index=False)
Out[10]:
int64 40000
float64 40000
datetime64[ns] 40000
timedelta64[ns] 40000
complex128 80000
object 40000
bool 5000
categorical 5800
dtype: int64
The memory usage displayed by the info()
method utilizes the
memory_usage()
method to determine the memory usage of a
DataFrame
while also formatting the output in human-readable units (base-2
representation; i.e. 1KB = 1024 bytes).
See also Categorical Memory Usage.
Using if/truth statements with pandas#
pandas follows the NumPy convention of raising an error when you try to convert
something to a bool
. This happens in an if
-statement or when using the
boolean operations: and
, or
, and not
. It is not clear what the result
of the following code should be:
>>> if pd.Series([False, True, False]):
... pass
Should it be True
because it’s not zero-length, or False
because there
are False
values? It is unclear, so instead, pandas raises a ValueError
:
In [11]: if pd.Series([False, True, False]):
....: print("I was true")
....:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-11-5c782b38cd2f> in ?()
----> 1 if pd.Series([False, True, False]):
2 print("I was true")
~/work/pandas/pandas/pandas/core/generic.py in ?(self)
1494 @final
1495 def __bool__(self) -> NoReturn:
-> 1496 raise ValueError(
1497 f"The truth value of a {type(self).__name__} is ambiguous. "
1498 "Use a.empty, a.bool(), a.item(), a.any() or a.all()."
1499 )
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
You need to explicitly choose what you want to do with the DataFrame
, e.g.
use any()
, all()
or empty()
.
Alternatively, you might want to compare if the pandas object is None
:
In [12]: if pd.Series([False, True, False]) is not None:
....: print("I was not None")
....:
I was not None
Below is how to check if any of the values are True
:
In [13]: if pd.Series([False, True, False]).any():
....: print("I am any")
....:
I am any
Bitwise Boolean#
Bitwise boolean operators like ==
and !=
return a boolean Series
which performs an element-wise comparison when compared to a scalar.
In [14]: s = pd.Series(range(5))
In [15]: s == 4
Out[15]:
0 False
1 False
2 False
3 False
4 True
dtype: bool
See boolean comparisons for more examples.
Using the in
operator#
Using the Python in
operator on a Series
tests for membership in the
index, not membership among the values.
In [16]: s = pd.Series(range(5), index=list("abcde"))
In [17]: 2 in s
Out[17]: False
In [18]: 'b' in s
Out[18]: True
If this behavior is surprising, keep in mind that using in
on a Python
dictionary tests keys, not values, and Series
are dict-like.
To test for membership in the values, use the method isin()
:
In [19]: s.isin([2])
Out[19]:
a False
b False
c True
d False
e False
dtype: bool
In [20]: s.isin([2]).any()
Out[20]: True
For DataFrame
, likewise, in
applies to the column axis,
testing for membership in the list of column names.
Mutating with User Defined Function (UDF) methods#
This section applies to pandas methods that take a UDF. In particular, the methods
DataFrame.apply()
, DataFrame.aggregate()
, DataFrame.transform()
, and
DataFrame.filter()
.
It is a general rule in programming that one should not mutate a container while it is being iterated over. Mutation will invalidate the iterator, causing unexpected behavior. Consider the example:
In [21]: values = [0, 1, 2, 3, 4, 5]
In [22]: n_removed = 0
In [23]: for k, value in enumerate(values):
....: idx = k - n_removed
....: if value % 2 == 1:
....: del values[idx]
....: n_removed += 1
....: else:
....: values[idx] = value + 1
....:
In [24]: values
Out[24]: [1, 4, 5]
One probably would have expected that the result would be [1, 3, 5]
.
When using a pandas method that takes a UDF, internally pandas is often
iterating over the
DataFrame
or other pandas object. Therefore, if the UDF mutates (changes)
the DataFrame
, unexpected behavior can arise.
Here is a similar example with DataFrame.apply()
:
In [25]: def f(s):
....: s.pop("a")
....: return s
....:
In [26]: df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
In [27]: df.apply(f, axis="columns")
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
File ~/work/pandas/pandas/pandas/core/indexes/base.py:3585, in Index.get_loc(self, key)
3584 try:
-> 3585 return self._engine.get_loc(casted_key)
3586 except KeyError as err:
File index.pyx:168, in pandas._libs.index.IndexEngine.get_loc()
File index.pyx:197, in pandas._libs.index.IndexEngine.get_loc()
File pandas/_libs/hashtable_class_helper.pxi:7668, in pandas._libs.hashtable.PyObjectHashTable.get_item()
File pandas/_libs/hashtable_class_helper.pxi:7676, in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: 'a'
The above exception was the direct cause of the following exception:
KeyError Traceback (most recent call last)
Cell In[27], line 1
----> 1 df.apply(f, axis="columns")
File ~/work/pandas/pandas/pandas/core/frame.py:10409, in DataFrame.apply(self, func, axis, raw, result_type, args, by_row, engine, engine_kwargs, **kwargs)
10395 from pandas.core.apply import frame_apply
10397 op = frame_apply(
10398 self,
10399 func=func,
(...)
10407 kwargs=kwargs,
10408 )
> 10409 return op.apply().__finalize__(self, method="apply")
File ~/work/pandas/pandas/pandas/core/apply.py:903, in FrameApply.apply(self)
900 elif self.raw:
901 return self.apply_raw(engine=self.engine, engine_kwargs=self.engine_kwargs)
--> 903 return self.apply_standard()
File ~/work/pandas/pandas/pandas/core/apply.py:1055, in FrameApply.apply_standard(self)
1053 def apply_standard(self):
1054 if self.engine == "python":
-> 1055 results, res_index = self.apply_series_generator()
1056 else:
1057 results, res_index = self.apply_series_numba()
File ~/work/pandas/pandas/pandas/core/apply.py:1071, in FrameApply.apply_series_generator(self)
1068 results = {}
1070 for i, v in enumerate(series_gen):
-> 1071 results[i] = self.func(v, *self.args, **self.kwargs)
1072 if isinstance(results[i], ABCSeries):
1073 # If we have a view on v, we need to make a copy because
1074 # series_generator will swap out the underlying data
1075 results[i] = results[i].copy(deep=False)
Cell In[25], line 2, in f(s)
1 def f(s):
----> 2 s.pop("a")
3 return s
File ~/work/pandas/pandas/pandas/core/series.py:5138, in Series.pop(self, item)
5107 def pop(self, item: Hashable) -> Any:
5108 """
5109 Return item and drops from series. Raise KeyError if not found.
5110
(...)
5136 dtype: int64
5137 """
-> 5138 return super().pop(item=item)
File ~/work/pandas/pandas/pandas/core/generic.py:835, in NDFrame.pop(self, item)
834 def pop(self, item: Hashable) -> Series | Any:
--> 835 result = self[item]
836 del self[item]
838 return result
File ~/work/pandas/pandas/pandas/core/series.py:946, in Series.__getitem__(self, key)
941 key = unpack_1tuple(key)
943 elif key_is_scalar:
944 # Note: GH#50617 in 3.0 we changed int key to always be treated as
945 # a label, matching DataFrame behavior.
--> 946 return self._get_value(key)
948 # Convert generator to list before going through hashable part
949 # (We will iterate through the generator there to check for slices)
950 if is_iterator(key):
File ~/work/pandas/pandas/pandas/core/series.py:1033, in Series._get_value(self, label, takeable)
1030 return self._values[label]
1032 # Similar to Index.get_value, but we do not fall back to positional
-> 1033 loc = self.index.get_loc(label)
1035 if is_integer(loc):
1036 return self._values[loc]
File ~/work/pandas/pandas/pandas/core/indexes/base.py:3592, in Index.get_loc(self, key)
3587 if isinstance(casted_key, slice) or (
3588 isinstance(casted_key, abc.Iterable)
3589 and any(isinstance(x, slice) for x in casted_key)
3590 ):
3591 raise InvalidIndexError(key) from err
-> 3592 raise KeyError(key) from err
3593 except TypeError:
3594 # If we have a listlike key, _check_indexing_error will raise
3595 # InvalidIndexError. Otherwise we fall through and re-raise
3596 # the TypeError.
3597 self._check_indexing_error(key)
KeyError: 'a'
To resolve this issue, one can make a copy so that the mutation does not apply to the container being iterated over.
In [28]: values = [0, 1, 2, 3, 4, 5]
In [29]: n_removed = 0
In [30]: for k, value in enumerate(values.copy()):
....: idx = k - n_removed
....: if value % 2 == 1:
....: del values[idx]
....: n_removed += 1
....: else:
....: values[idx] = value + 1
....:
In [31]: values
Out[31]: [1, 3, 5]
In [32]: def f(s):
....: s = s.copy()
....: s.pop("a")
....: return s
....:
In [33]: df = pd.DataFrame({"a": [1, 2, 3], 'b': [4, 5, 6]})
In [34]: df.apply(f, axis="columns")
Out[34]:
b
0 4
1 5
2 6
Missing value representation for NumPy types#
np.nan
as the NA
representation for NumPy types#
For lack of NA
(missing) support from the ground up in NumPy and Python in
general, NA
could have been represented with:
A masked array solution: an array of data and an array of boolean values indicating whether a value is there or is missing.
Using a special sentinel value, bit pattern, or set of sentinel values to denote
NA
across the dtypes.
The special value np.nan
(Not-A-Number) was chosen as the NA
value for NumPy types, and there are API
functions like DataFrame.isna()
and DataFrame.notna()
which can be used across the dtypes to
detect NA values. However, this choice has a downside of coercing missing integer data as float types as
shown in Support for integer NA.
NA
type promotions for NumPy types#
When introducing NAs into an existing Series
or DataFrame
via
reindex()
or some other means, boolean and integer types will be
promoted to a different dtype in order to store the NAs. The promotions are
summarized in this table:
Typeclass |
Promotion dtype for storing NAs |
---|---|
|
no change |
|
no change |
|
cast to |
|
cast to |
Support for integer NA
#
In the absence of high performance NA
support being built into NumPy from
the ground up, the primary casualty is the ability to represent NAs in integer
arrays. For example:
In [35]: s = pd.Series([1, 2, 3, 4, 5], index=list("abcde"))
In [36]: s
Out[36]:
a 1
b 2
c 3
d 4
e 5
dtype: int64
In [37]: s.dtype
Out[37]: dtype('int64')
In [38]: s2 = s.reindex(["a", "b", "c", "f", "u"])
In [39]: s2
Out[39]:
a 1.0
b 2.0
c 3.0
f NaN
u NaN
dtype: float64
In [40]: s2.dtype
Out[40]: dtype('float64')
This trade-off is made largely for memory and performance reasons, and also so
that the resulting Series
continues to be “numeric”.
If you need to represent integers with possibly missing values, use one of the nullable-integer extension dtypes provided by pandas or pyarrow
In [41]: s_int = pd.Series([1, 2, 3, 4, 5], index=list("abcde"), dtype=pd.Int64Dtype())
In [42]: s_int
Out[42]:
a 1
b 2
c 3
d 4
e 5
dtype: Int64
In [43]: s_int.dtype
Out[43]: Int64Dtype()
In [44]: s2_int = s_int.reindex(["a", "b", "c", "f", "u"])
In [45]: s2_int
Out[45]:
a 1
b 2
c 3
f <NA>
u <NA>
dtype: Int64
In [46]: s2_int.dtype
Out[46]: Int64Dtype()
In [47]: s_int_pa = pd.Series([1, 2, None], dtype="int64[pyarrow]")
In [48]: s_int_pa
Out[48]:
0 1
1 2
2 <NA>
dtype: int64[pyarrow]
See Nullable integer data type and PyArrow Functionality for more.
Why not make NumPy like R?#
Many people have suggested that NumPy should simply emulate the NA
support
present in the more domain-specific statistical programming language R. Part of the reason is the
NumPy type hierarchy.
The R language, by contrast, only has a handful of built-in data types:
integer
, numeric
(floating-point), character
, and
boolean
. NA
types are implemented by reserving special bit patterns for
each type to be used as the missing value. While doing this with the full NumPy
type hierarchy would be possible, it would be a more substantial trade-off
(especially for the 8- and 16-bit data types) and implementation undertaking.
However, R NA
semantics are now available by using masked NumPy types such as Int64Dtype
or PyArrow types (ArrowDtype
).
Differences with NumPy#
For Series
and DataFrame
objects, var()
normalizes by
N-1
to produce unbiased estimates of the population variance, while NumPy’s
numpy.var()
normalizes by N, which measures the variance of the sample. Note that
cov()
normalizes by N-1
in both pandas and NumPy.
Thread-safety#
pandas is not 100% thread safe. The known issues relate to
the copy()
method. If you are doing a lot of copying of
DataFrame
objects shared among threads, we recommend holding locks inside
the threads where the data copying occurs.
See this link for more information.
Byte-ordering issues#
Occasionally you may have to deal with data that were created on a machine with a different byte order than the one on which you are running Python. A common symptom of this issue is an error like:
Traceback
...
ValueError: Big-endian buffer not supported on little-endian compiler
To deal
with this issue you should convert the underlying NumPy array to the native
system byte order before passing it to Series
or DataFrame
constructors using something similar to the following:
In [49]: x = np.array(list(range(10)), ">i4") # big endian
In [50]: newx = x.byteswap().view(x.dtype.newbyteorder()) # force native byteorder
In [51]: s = pd.Series(newx)
See the NumPy documentation on byte order for more details.