pandas.core.groupby.DataFrameGroupBy.min#
- DataFrameGroupBy.min(numeric_only=False, min_count=-1, engine=None, engine_kwargs=None)[source]#
Compute min of group values.
- Parameters:
- numeric_onlybool, default False
Include only float, int, boolean columns.
Changed in version 2.0.0: numeric_only no longer accepts
None
.- min_countint, default -1
The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.- enginestr, default None None
'cython'
: Runs rolling apply through C-extensions from cython.'numba'
Runs rolling apply through JIT compiled code from numba.Only available when
raw
is set toTrue
.
None
: Defaults to'cython'
or globally settingcompute.use_numba
- engine_kwargsdict, default None None
For
'cython'
engine, there are no acceptedengine_kwargs
- For
'numba'
engine, the engine can acceptnopython
,nogil
and
parallel
dictionary keys. The values must either beTrue
orFalse
. The defaultengine_kwargs
for the'numba'
engine is{'nopython': True, 'nogil': False, 'parallel': False}
and will be applied to both thefunc
and theapply
groupby aggregation.
- For
- Returns:
- Series or DataFrame
Computed min of values within each group.
See also
SeriesGroupBy.min
Return the min of the group values.
DataFrameGroupBy.min
Return the min of the group values.
SeriesGroupBy.max
Return the max of the group values.
DataFrameGroupBy.max
Return the max of the group values.
SeriesGroupBy.sum
Return the sum of the group values.
DataFrameGroupBy.sum
Return the sum of the group values.
Examples
For SeriesGroupBy:
>>> lst = ['a', 'a', 'b', 'b'] >>> ser = pd.Series([1, 2, 3, 4], index=lst) >>> ser a 1 a 2 b 3 b 4 dtype: int64 >>> ser.groupby(level=0).min() a 1 b 3 dtype: int64
For DataFrameGroupBy:
>>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]] >>> df = pd.DataFrame(data, columns=["a", "b", "c"], ... index=["tiger", "leopard", "cheetah", "lion"]) >>> df a b c tiger 1 8 2 leopard 1 2 5 cheetah 2 5 8 lion 2 6 9 >>> df.groupby("a").min() b c a 1 2 2 2 5 8