pandas.core.groupby.SeriesGroupBy.get_group#

SeriesGroupBy.get_group(name)[source]#

Construct DataFrame from group with provided name.

Parameters:
nameobject

The name of the group to get as a DataFrame.

Returns:
Series or DataFrame

Get the respective Series or DataFrame corresponding to the group provided.

See also

DataFrameGroupBy.groups

Dictionary representation of the groupings formed during a groupby operation.

DataFrameGroupBy.indices

Provides a mapping of group rows to positions of the elements.

SeriesGroupBy.groups

Dictionary representation of the groupings formed during a groupby operation.

SeriesGroupBy.indices

Provides a mapping of group rows to positions of the elements.

Examples

For SeriesGroupBy:

>>> lst = ["a", "a", "b"]
>>> ser = pd.Series([1, 2, 3], index=lst)
>>> ser
a    1
a    2
b    3
dtype: int64
>>> ser.groupby(level=0).get_group("a")
a    1
a    2
dtype: int64

For DataFrameGroupBy:

>>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]]
>>> df = pd.DataFrame(
...     data, columns=["a", "b", "c"], index=["owl", "toucan", "eagle"]
... )
>>> df
        a  b  c
owl     1  2  3
toucan  1  5  6
eagle   7  8  9
>>> df.groupby(by=["a"]).get_group((1,))
        a  b  c
owl     1  2  3
toucan  1  5  6

For Resampler:

>>> ser = pd.Series(
...     [1, 2, 3, 4],
...     index=pd.DatetimeIndex(
...         ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"]
...     ),
... )
>>> ser
2023-01-01    1
2023-01-15    2
2023-02-01    3
2023-02-15    4
dtype: int64
>>> ser.resample("MS").get_group("2023-01-01")
2023-01-01    1
2023-01-15    2
dtype: int64