pandas.core.groupby.SeriesGroupBy.idxmax#
- SeriesGroupBy.idxmax(skipna=True)[source]#
Return the row label of the maximum value.
If multiple values equal the maximum, the first row label with that value is returned.
- Parameters:
- skipnabool, default True
Exclude NA values.
- Returns:
- Series
Indexes of maxima in each group.
- Raises:
- ValueError
If the Series is empty or skipna=False and any value is NA.
See also
numpy.argmax
Return indices of the maximum values along the given axis.
DataFrame.idxmax
Return index of first occurrence of maximum over requested axis.
Series.idxmin
Return index label of the first occurrence of minimum of values.
Examples
>>> ser = pd.Series( ... [1, 2, 3, 4], ... index=pd.DatetimeIndex( ... ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"] ... ), ... ) >>> ser 2023-01-01 1 2023-01-15 2 2023-02-01 3 2023-02-15 4 dtype: int64
>>> ser.groupby(["a", "a", "b", "b"]).idxmax() a 2023-01-15 b 2023-02-15 dtype: datetime64[s]