pandas.core.groupby.SeriesGroupBy.count#
- SeriesGroupBy.count()[source]#
Compute count of group, excluding missing values.
- Returns:
- Series or DataFrame
Count of values within each group.
See also
Series.groupby
Apply a function groupby to a Series.
DataFrame.groupby
Apply a function groupby to each row or column of a DataFrame.
Examples
For SeriesGroupBy:
>>> lst = ["a", "a", "b"] >>> ser = pd.Series([1, 2, np.nan], index=lst) >>> ser a 1.0 a 2.0 b NaN dtype: float64 >>> ser.groupby(level=0).count() a 2 b 0 dtype: int64
For DataFrameGroupBy:
>>> data = [[1, np.nan, 3], [1, np.nan, 6], [7, 8, 9]] >>> df = pd.DataFrame( ... data, columns=["a", "b", "c"], index=["cow", "horse", "bull"] ... ) >>> df a b c cow 1 NaN 3 horse 1 NaN 6 bull 7 8.0 9 >>> df.groupby("a").count() b c a 1 0 2 7 1 1
For Resampler:
>>> ser = pd.Series( ... [1, 2, 3, 4], ... index=pd.DatetimeIndex( ... ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"] ... ), ... ) >>> ser 2023-01-01 1 2023-01-15 2 2023-02-01 3 2023-02-15 4 dtype: int64 >>> ser.resample("MS").count() 2023-01-01 2 2023-02-01 2 Freq: MS, dtype: int64