pandas.core.groupby.SeriesGroupBy.idxmin#
- SeriesGroupBy.idxmin(skipna=True)[source]#
Return the row label of the minimum value.
If multiple values equal the minimum, the first row label with that value is returned.
- Parameters:
- skipnabool, default True
Exclude NA values.
- Returns:
- Index
Label of the minimum value.
- Raises:
- ValueError
If the Series is empty or skipna=False and any value is NA.
See also
numpy.argmin
Return indices of the minimum values along the given axis.
DataFrame.idxmin
Return index of first occurrence of minimum over requested axis.
Series.idxmax
Return index label of the first occurrence of maximum of values.
Examples
>>> ser = pd.Series( ... [1, 2, 3, 4], ... index=pd.DatetimeIndex( ... ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"] ... ), ... ) >>> ser 2023-01-01 1 2023-01-15 2 2023-02-01 3 2023-02-15 4 dtype: int64
>>> ser.groupby(["a", "a", "b", "b"]).idxmin() a 2023-01-01 b 2023-02-01 dtype: datetime64[s]