pandas.io.formats.style.Styler.format#
- Styler.format(formatter=None, subset=None, na_rep=None, precision=None, decimal='.', thousands=None, escape=None, hyperlinks=None)[source]#
- Format the text display value of cells. - Parameters:
- formatterstr, callable, dict or None
- Object to define how values are displayed. See notes. 
- subsetlabel, array-like, IndexSlice, optional
- A valid 2d input to DataFrame.loc[<subset>], or, in the case of a 1d input or single key, to DataFrame.loc[:, <subset>] where the columns are prioritised, to limit - datato before applying the function.
- na_repstr, optional
- Representation for missing values. If - na_repis None, no special formatting is applied.
- precisionint, optional
- Floating point precision to use for display purposes, if not determined by the specified - formatter.- Added in version 1.3.0. 
- decimalstr, default “.”
- Character used as decimal separator for floats, complex and integers. - Added in version 1.3.0. 
- thousandsstr, optional, default None
- Character used as thousands separator for floats, complex and integers. - Added in version 1.3.0. 
- escapestr, optional
- Use ‘html’ to replace the characters - &,- <,- >,- ', and- "in cell display string with HTML-safe sequences. Use ‘latex’ to replace the characters- &,- %,- $,- #,- _,- {,- },- ~,- ^, and- \in the cell display string with LaTeX-safe sequences. Use ‘latex-math’ to replace the characters the same way as in ‘latex’ mode, except for math substrings, which either are surrounded by two characters- $or start with the character- \(and end with- \). Escaping is done before- formatter.- Added in version 1.3.0. 
- hyperlinks{“html”, “latex”}, optional
- Convert string patterns containing https://, http://, ftp:// or www. to HTML <a> tags as clickable URL hyperlinks if “html”, or LaTeX href commands if “latex”. - Added in version 1.4.0. 
 
- Returns:
- Styler
- Returns itself for chaining. 
 
 - See also - Styler.format_index
- Format the text display value of index labels. 
 - Notes - This method assigns a formatting function, - formatter, to each cell in the DataFrame. If- formatteris- None, then the default formatter is used. If a callable then that function should take a data value as input and return a displayable representation, such as a string. If- formatteris given as a string this is assumed to be a valid Python format specification and is wrapped to a callable as- string.format(x). If a- dictis given, keys should correspond to column names, and values should be string or callable, as above.- The default formatter currently expresses floats and complex numbers with the pandas display precision unless using the - precisionargument here. The default formatter does not adjust the representation of missing values unless the- na_repargument is used.- The - subsetargument defines which region to apply the formatting function to. If the- formatterargument is given in dict form but does not include all columns within the subset then these columns will have the default formatter applied. Any columns in the formatter dict excluded from the subset will be ignored.- When using a - formatterstring the dtypes must be compatible, otherwise a ValueError will be raised.- When instantiating a Styler, default formatting can be applied by setting the - pandas.options:- styler.format.formatter: default None.
- styler.format.na_rep: default None.
- styler.format.precision: default 6.
- styler.format.decimal: default “.”.
- styler.format.thousands: default None.
- styler.format.escape: default None.
 - Warning - Styler.format is ignored when using the output format Styler.to_excel, since Excel and Python have inherently different formatting structures. However, it is possible to use the number-format pseudo CSS attribute to force Excel permissible formatting. See examples. - Examples - Using - na_repand- precisionwith the default- formatter- >>> df = pd.DataFrame([[np.nan, 1.0, 'A'], [2.0, np.nan, 3.0]]) >>> df.style.format(na_rep='MISS', precision=3) 0 1 2 0 MISS 1.000 A 1 2.000 MISS 3.000 - Using a - formatterspecification on consistent column dtypes- >>> df.style.format('{:.2f}', na_rep='MISS', subset=[0, 1]) 0 1 2 0 MISS 1.00 A 1 2.00 MISS 3.000000 - Using the default - formatterfor unspecified columns- >>> df.style.format({0: '{:.2f}', 1: '£ {:.1f}'}, ... na_rep='MISS', precision=1) 0 1 2 0 MISS £ 1.0 A 1 2.00 MISS 3.0 - Multiple - na_repor- precisionspecifications under the default- formatter.- >>> (df.style.format(na_rep='MISS', precision=1, subset=[0]).format( ... na_rep='PASS', precision=2, subset=[1, 2])) 0 1 2 0 MISS 1.00 A 1 2.0 PASS 3.00 - Using a callable - formatterfunction.- >>> func = lambda s: 'STRING' if isinstance(s, str) else 'FLOAT' >>> df.style.format({0: '{:.1f}', 2: func}, ... precision=4, na_rep='MISS') 0 1 2 0 MISS 1.0000 STRING 1 2.0 MISS FLOAT - Using a - formatterwith HTML- escapeand- na_rep.- >>> df = pd.DataFrame([['<div></div>', '"A&B"', None]]) >>> s = df.style.format( ... '<a href="a.com/{0}">{0}</a>', escape="html", na_rep="NA") >>> s.to_html() ... <td .. ><a href="a.com/<div></div>"><div></div></a></td> <td .. ><a href="a.com/"A&B"">"A&B"</a></td> <td .. >NA</td> ... - Using a - formatterwith- escapein ‘latex’ mode.- >>> df = pd.DataFrame([["123"], ["~ ^"], ["$%#"]]) >>> df.style.format("\\textbf{{{}}}", ... escape="latex").to_latex() \begin{tabular}{ll} & 0 \\ 0 & \textbf{123} \\ 1 & \textbf{\textasciitilde \space \textasciicircum } \\ 2 & \textbf{\$\%\#} \\ \end{tabular} - Applying - escapein ‘latex-math’ mode. In the example below we enter math mode using the character- $.- >>> df = pd.DataFrame([ ... [r"$\sum_{i=1}^{10} a_i$ a~b $\alpha = \frac{\beta}{\zeta^2}$"], ... [r"%#^ $ \$x^2 $"]]) >>> df.style.format(escape="latex-math").to_latex() \begin{tabular}{ll} & 0 \\ 0 & $\sum_{i=1}^{10} a_i$ a\textasciitilde b $\alpha = \frac{\beta}{\zeta^2}$ \\ 1 & \%\#\textasciicircum \space $ \$x^2 $ \\ \end{tabular} - We can use the character - \(to enter math mode and the character- \)to close math mode.- >>> df = pd.DataFrame([ ... [r"\(\sum_{i=1}^{10} a_i\) a~b \(\alpha = \frac{\beta}{\zeta^2}\)"], ... [r"%#^ \( \$x^2 \)"]]) >>> df.style.format(escape="latex-math").to_latex() \begin{tabular}{ll} & 0 \\ 0 & \(\sum_{i=1}^{10} a_i\) a\textasciitilde b \(\alpha = \frac{\beta}{\zeta^2}\) \\ 1 & \%\#\textasciicircum \space \( \$x^2 \) \\ \end{tabular} - If we have in one DataFrame cell a combination of both shorthands for math formulas, the shorthand with the sign - $will be applied.- >>> df = pd.DataFrame([ ... [r"\( x^2 \) $x^2$"], ... [r"$\frac{\beta}{\zeta}$ \(\frac{\beta}{\zeta}\)"]]) >>> df.style.format(escape="latex-math").to_latex() \begin{tabular}{ll} & 0 \\ 0 & \textbackslash ( x\textasciicircum 2 \textbackslash ) $x^2$ \\ 1 & $\frac{\beta}{\zeta}$ \textbackslash (\textbackslash frac\{\textbackslash beta\}\{\textbackslash zeta\}\textbackslash ) \\ \end{tabular} - Pandas defines a number-format pseudo CSS attribute instead of the .format method to create to_excel permissible formatting. Note that semi-colons are CSS protected characters but used as separators in Excel’s format string. Replace semi-colons with the section separator character (ASCII-245) when defining the formatting here. - >>> df = pd.DataFrame({"A": [1, 0, -1]}) >>> pseudo_css = "number-format: 0§[Red](0)§-§@;" >>> filename = "formatted_file.xlsx" >>> df.style.map(lambda v: pseudo_css).to_excel(filename) 