pandas.io.formats.style.Styler.map#
- Styler.map(func, subset=None, **kwargs)[source]#
- Apply a CSS-styling function elementwise. - Updates the HTML representation with the result. - Parameters:
- funcfunction
- funcshould take a scalar and return a string.
- subsetlabel, array-like, IndexSlice, optional
- A valid 2d input to DataFrame.loc[<subset>], or, in the case of a 1d input or single key, to DataFrame.loc[:, <subset>] where the columns are prioritised, to limit - datato before applying the function.
- **kwargsdict
- Pass along to - func.
 
- Returns:
- Styler
- Instance of class with CSS-styling function applied elementwise. 
 
 - See also - Styler.map_index
- Apply a CSS-styling function to headers elementwise. 
- Styler.apply_index
- Apply a CSS-styling function to headers level-wise. 
- Styler.apply
- Apply a CSS-styling function column-wise, row-wise, or table-wise. 
 - Notes - The elements of the output of - funcshould be CSS styles as strings, in the format ‘attribute: value; attribute2: value2; …’ or, if nothing is to be applied to that element, an empty string or- None.- Examples - >>> def color_negative(v, color): ... return f"color: {color};" if v < 0 else None >>> df = pd.DataFrame(np.random.randn(5, 2), columns=["A", "B"]) >>> df.style.map(color_negative, color="red") - Using - subsetto restrict application to a single column or multiple columns- >>> df.style.map(color_negative, color="red", subset="A") ... >>> df.style.map(color_negative, color="red", subset=["A", "B"]) ... - Using a 2d input to - subsetto select rows in addition to columns- >>> df.style.map( ... color_negative, color="red", subset=([0, 1, 2], slice(None)) ... ) >>> df.style.map(color_negative, color="red", subset=(slice(0, 5, 2), "A")) ... - See Table Visualization user guide for more details.