pandas.core.window.expanding.Expanding.corr¶
-
Expanding.
corr
(other=None, pairwise=None, **kwargs)[source]¶ Calculate expanding correlation.
- Parameters
- otherSeries, DataFrame, or ndarray, optional
If not supplied then will default to self.
- pairwisebool, default None
Calculate pairwise combinations of columns within a DataFrame. If other is not specified, defaults to True, otherwise defaults to False. Not relevant for
Series
.- **kwargs
Unused.
- Returns
- Series or DataFrame
Returned object type is determined by the caller of the expanding calculation.
See also
pandas.Series.expanding
Calling object with Series data.
pandas.DataFrame.expanding
Calling object with DataFrames.
pandas.Series.corr
Equivalent method for Series.
pandas.DataFrame.corr
Equivalent method for DataFrame.
cov
Similar method to calculate covariance.
numpy.corrcoef
NumPy Pearson’s correlation calculation.
Notes
This function uses Pearson’s definition of correlation (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient).
When other is not specified, the output will be self correlation (e.g. all 1’s), except for
DataFrame
inputs with pairwise set to True.Function will return
NaN
for correlations of equal valued sequences; this is the result of a 0/0 division error.When pairwise is set to False, only matching columns between self and other will be used.
When pairwise is set to True, the output will be a MultiIndex DataFrame with the original index on the first level, and the other DataFrame columns on the second level.
In the case of missing elements, only complete pairwise observations will be used.
Examples
The below example shows a rolling calculation with a window size of four matching the equivalent function call using
numpy.corrcoef()
.>>> v1 = [3, 3, 3, 5, 8] >>> v2 = [3, 4, 4, 4, 8] >>> # numpy returns a 2X2 array, the correlation coefficient >>> # is the number at entry [0][1] >>> print(f"{np.corrcoef(v1[:-1], v2[:-1])[0][1]:.6f}") 0.333333 >>> print(f"{np.corrcoef(v1[1:], v2[1:])[0][1]:.6f}") 0.916949 >>> s1 = pd.Series(v1) >>> s2 = pd.Series(v2) >>> s1.rolling(4).corr(s2) 0 NaN 1 NaN 2 NaN 3 0.333333 4 0.916949 dtype: float64
The below example shows a similar rolling calculation on a DataFrame using the pairwise option.
>>> matrix = np.array([[51., 35.], [49., 30.], [47., 32.], [46., 31.], [50., 36.]]) >>> print(np.corrcoef(matrix[:-1,0], matrix[:-1,1]).round(7)) [[1. 0.6263001] [0.6263001 1. ]] >>> print(np.corrcoef(matrix[1:,0], matrix[1:,1]).round(7)) [[1. 0.5553681] [0.5553681 1. ]] >>> df = pd.DataFrame(matrix, columns=['X','Y']) >>> df X Y 0 51.0 35.0 1 49.0 30.0 2 47.0 32.0 3 46.0 31.0 4 50.0 36.0 >>> df.rolling(4).corr(pairwise=True) X Y 0 X NaN NaN Y NaN NaN 1 X NaN NaN Y NaN NaN 2 X NaN NaN Y NaN NaN 3 X 1.000000 0.626300 Y 0.626300 1.000000 4 X 1.000000 0.555368 Y 0.555368 1.000000