pandas.CategoricalIndex#
- class pandas.CategoricalIndex(data=None, categories=None, ordered=None, dtype=None, copy=False, name=None)[source]#
- Index based on an underlying - Categorical.- CategoricalIndex, like Categorical, can only take on a limited, and usually fixed, number of possible values (categories). Also, like Categorical, it might have an order, but numerical operations (additions, divisions, …) are not possible. - Parameters:
- dataarray-like (1-dimensional)
- The values of the categorical. If categories are given, values not in categories will be replaced with NaN. 
- categoriesindex-like, optional
- The categories for the categorical. Items need to be unique. If the categories are not given here (and also not in dtype), they will be inferred from the data. 
- orderedbool, optional
- Whether or not this categorical is treated as an ordered categorical. If not given here or in dtype, the resulting categorical will be unordered. 
- dtypeCategoricalDtype or “category”, optional
- If - CategoricalDtype, cannot be used together with categories or ordered.
- copybool, default False
- Make a copy of input ndarray. 
- nameobject, optional
- Name to be stored in the index. 
 
 - Attributes - The category codes of this categorical index. - The categories of this categorical. - Whether the categories have an ordered relationship. - Methods - rename_categories(*args, **kwargs)- Rename categories. - reorder_categories(*args, **kwargs)- Reorder categories as specified in new_categories. - add_categories(*args, **kwargs)- Add new categories. - remove_categories(*args, **kwargs)- Remove the specified categories. - remove_unused_categories(*args, **kwargs)- Remove categories which are not used. - set_categories(*args, **kwargs)- Set the categories to the specified new categories. - as_ordered(*args, **kwargs)- Set the Categorical to be ordered. - as_unordered(*args, **kwargs)- Set the Categorical to be unordered. - map(mapper[, na_action])- Map values using input an input mapping or function. - Raises:
- ValueError
- If the categories do not validate. 
- TypeError
- If an explicit - ordered=Trueis given but no categories and the values are not sortable.
 
 - See also - Index
- The base pandas Index type. 
- Categorical
- A categorical array. 
- CategoricalDtype
- Type for categorical data. 
 - Notes - See the user guide for more. - Examples - >>> pd.CategoricalIndex(["a", "b", "c", "a", "b", "c"]) CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') - CategoricalIndexcan also be instantiated from a- Categorical:- >>> c = pd.Categorical(["a", "b", "c", "a", "b", "c"]) >>> pd.CategoricalIndex(c) CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') - Ordered - CategoricalIndexcan have a min and max value.- >>> ci = pd.CategoricalIndex( ... ["a", "b", "c", "a", "b", "c"], ordered=True, categories=["c", "b", "a"] ... ) >>> ci CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['c', 'b', 'a'], ordered=True, dtype='category') >>> ci.min() 'c'