pandas.Index.isin#
- Index.isin(values, level=None)[source]#
- Return a boolean array where the index values are in values. - Compute boolean array of whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index. - Parameters:
- valuesset or list-like
- Sought values. 
- levelstr or int, optional
- Name or position of the index level to use (if the index is a MultiIndex). 
 
- Returns:
- np.ndarray[bool]
- NumPy array of boolean values. 
 
 - See also - Series.isin
- Same for Series. 
- DataFrame.isin
- Same method for DataFrames. 
 - Notes - In the case of MultiIndex you must either specify values as a list-like object containing tuples that are the same length as the number of levels, or specify level. Otherwise it will raise a - ValueError.- If level is specified: - if it is the name of one and only one index level, use that level; 
- otherwise it should be a number indicating level position. 
 - Examples - >>> idx = pd.Index([1,2,3]) >>> idx Index([1, 2, 3], dtype='int64') - Check whether each index value in a list of values. - >>> idx.isin([1, 4]) array([ True, False, False]) - >>> midx = pd.MultiIndex.from_arrays([[1,2,3], ... ['red', 'blue', 'green']], ... names=('number', 'color')) >>> midx MultiIndex([(1, 'red'), (2, 'blue'), (3, 'green')], names=['number', 'color']) - Check whether the strings in the ‘color’ level of the MultiIndex are in a list of colors. - >>> midx.isin(['red', 'orange', 'yellow'], level='color') array([ True, False, False]) - To check across the levels of a MultiIndex, pass a list of tuples: - >>> midx.isin([(1, 'red'), (3, 'red')]) array([ True, False, False])