pandas.MultiIndex#
- class pandas.MultiIndex(levels=None, codes=None, sortorder=None, names=None, dtype=None, copy=False, name=None, verify_integrity=True)[source]#
- A multi-level, or hierarchical, index object for pandas objects. - Parameters:
- levelssequence of arrays
- The unique labels for each level. 
- codessequence of arrays
- Integers for each level designating which label at each location. 
- sortorderoptional int
- Level of sortedness (must be lexicographically sorted by that level). 
- namesoptional sequence of objects
- Names for each of the index levels. (name is accepted for compat). 
- copybool, default False
- Copy the meta-data. 
- verify_integritybool, default True
- Check that the levels/codes are consistent and valid. 
 
 - Attributes - Names of levels in MultiIndex. - Levels of the MultiIndex. - Integer number of levels in this MultiIndex. - A tuple with the length of each level. - Return the dtypes as a Series for the underlying MultiIndex. - codes - Methods - from_arrays(arrays[, sortorder, names])- Convert arrays to MultiIndex. - from_tuples(tuples[, sortorder, names])- Convert list of tuples to MultiIndex. - from_product(iterables[, sortorder, names])- Make a MultiIndex from the cartesian product of multiple iterables. - from_frame(df[, sortorder, names])- Make a MultiIndex from a DataFrame. - set_levels(levels, *[, level, verify_integrity])- Set new levels on MultiIndex. - set_codes(codes, *[, level, verify_integrity])- Set new codes on MultiIndex. - to_frame([index, name, allow_duplicates])- Create a DataFrame with the levels of the MultiIndex as columns. - Convert a MultiIndex to an Index of Tuples containing the level values. - sortlevel([level, ascending, ...])- Sort MultiIndex at the requested level. - droplevel([level])- Return index with requested level(s) removed. - swaplevel([i, j])- Swap level i with level j. - reorder_levels(order)- Rearrange levels using input order. - Create new MultiIndex from current that removes unused levels. - get_level_values(level)- Return vector of label values for requested level. - get_indexer(target[, method, limit, tolerance])- Compute indexer and mask for new index given the current index. - get_loc(key)- Get location for a label or a tuple of labels. - get_locs(seq)- Get location for a sequence of labels. - get_loc_level(key[, level, drop_level])- Get location and sliced index for requested label(s)/level(s). - drop(codes[, level, errors])- Make a new - pandas.MultiIndexwith the passed list of codes deleted.- See also - MultiIndex.from_arrays
- Convert list of arrays to MultiIndex. 
- MultiIndex.from_product
- Create a MultiIndex from the cartesian product of iterables. 
- MultiIndex.from_tuples
- Convert list of tuples to a MultiIndex. 
- MultiIndex.from_frame
- Make a MultiIndex from a DataFrame. 
- Index
- The base pandas Index type. 
 - Notes - See the user guide for more. - Examples - A new - MultiIndexis typically constructed using one of the helper methods- MultiIndex.from_arrays(),- MultiIndex.from_product()and- MultiIndex.from_tuples(). For example (using- .from_arrays):- >>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) - See further examples for how to construct a MultiIndex in the doc strings of the mentioned helper methods.