pandas.DatetimeIndex#
- class pandas.DatetimeIndex(data=None, freq=<no_default>, tz=<no_default>, normalize=<no_default>, closed=<no_default>, ambiguous='raise', dayfirst=False, yearfirst=False, dtype=None, copy=False, name=None)[source]#
- Immutable ndarray-like of datetime64 data. - Represented internally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata. - Changed in version 2.0.0: The various numeric date/time attributes ( - day,- month,- yearetc.) now have dtype- int32. Previously they had dtype- int64.- Parameters:
- dataarray-like (1-dimensional)
- Datetime-like data to construct index with. 
- freqstr or pandas offset object, optional
- One of pandas date offset strings or corresponding objects. The string ‘infer’ can be passed in order to set the frequency of the index as the inferred frequency upon creation. 
- tzpytz.timezone or dateutil.tz.tzfile or datetime.tzinfo or str
- Set the Timezone of the data. 
- normalizebool, default False
- Normalize start/end dates to midnight before generating date range. - Deprecated since version 2.1.0. 
- closed{‘left’, ‘right’}, optional
- Set whether to include start and end that are on the boundary. The default includes boundary points on either end. - Deprecated since version 2.1.0. 
- ambiguous‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
- When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the ambiguous parameter dictates how ambiguous times should be handled. - ‘infer’ will attempt to infer fall dst-transition hours based on order 
- bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) 
- ‘NaT’ will return NaT where there are ambiguous times 
- ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times. 
 
- dayfirstbool, default False
- If True, parse dates in data with the day first order. 
- yearfirstbool, default False
- If True parse dates in data with the year first order. 
- dtypenumpy.dtype or DatetimeTZDtype or str, default None
- Note that the only NumPy dtype allowed is datetime64[ns]. 
- copybool, default False
- Make a copy of input ndarray. 
- namelabel, default None
- Name to be stored in the index. 
 
 - Attributes - The year of the datetime. - The month as January=1, December=12. - The day of the datetime. - The hours of the datetime. - The minutes of the datetime. - The seconds of the datetime. - The microseconds of the datetime. - The nanoseconds of the datetime. - Returns numpy array of python - datetime.dateobjects.- Returns numpy array of - datetime.timeobjects.- Returns numpy array of - datetime.timeobjects with timezones.- The ordinal day of the year. - The ordinal day of the year. - The day of the week with Monday=0, Sunday=6. - The day of the week with Monday=0, Sunday=6. - The day of the week with Monday=0, Sunday=6. - The quarter of the date. - Return the timezone. - Return the frequency object as a string if it's set, otherwise None. - Indicates whether the date is the first day of the month. - Indicates whether the date is the last day of the month. - Indicator for whether the date is the first day of a quarter. - Indicator for whether the date is the last day of a quarter. - Indicate whether the date is the first day of a year. - Indicate whether the date is the last day of the year. - Boolean indicator if the date belongs to a leap year. - Tries to return a string representing a frequency generated by infer_freq. - freq - Methods - normalize(*args, **kwargs)- Convert times to midnight. - strftime(date_format)- Convert to Index using specified date_format. - snap([freq])- Snap time stamps to nearest occurring frequency. - tz_convert(tz)- Convert tz-aware Datetime Array/Index from one time zone to another. - tz_localize(tz[, ambiguous, nonexistent])- Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. - round(*args, **kwargs)- Perform round operation on the data to the specified freq. - floor(*args, **kwargs)- Perform floor operation on the data to the specified freq. - ceil(*args, **kwargs)- Perform ceil operation on the data to the specified freq. - to_period(*args, **kwargs)- Cast to PeriodArray/PeriodIndex at a particular frequency. - to_pydatetime(*args, **kwargs)- Return an ndarray of - datetime.datetimeobjects.- to_series([index, name])- Create a Series with both index and values equal to the index keys. - to_frame([index, name])- Create a DataFrame with a column containing the Index. - month_name(*args, **kwargs)- Return the month names with specified locale. - day_name(*args, **kwargs)- Return the day names with specified locale. - mean(*[, skipna, axis])- Return the mean value of the Array. - std(*args, **kwargs)- Return sample standard deviation over requested axis. - See also - Index
- The base pandas Index type. 
- TimedeltaIndex
- Index of timedelta64 data. 
- PeriodIndex
- Index of Period data. 
- to_datetime
- Convert argument to datetime. 
- date_range
- Create a fixed-frequency DatetimeIndex. 
 - Notes - To learn more about the frequency strings, please see this link. - Examples - >>> idx = pd.DatetimeIndex(["1/1/2020 10:00:00+00:00", "2/1/2020 11:00:00+00:00"]) >>> idx DatetimeIndex(['2020-01-01 10:00:00+00:00', '2020-02-01 11:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None)