pandas.Index.value_counts#
- Index.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)[source]#
- Return a Series containing counts of unique values. - The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. - Parameters:
- normalizebool, default False
- If True then the object returned will contain the relative frequencies of the unique values. 
- sortbool, default True
- Sort by frequencies when True. Preserve the order of the data when False. 
- ascendingbool, default False
- Sort in ascending order. 
- binsint, optional
- Rather than count values, group them into half-open bins, a convenience for - pd.cut, only works with numeric data.
- dropnabool, default True
- Don’t include counts of NaN. 
 
- Returns:
- Series
 
 - See also - Series.count
- Number of non-NA elements in a Series. 
- DataFrame.count
- Number of non-NA elements in a DataFrame. 
- DataFrame.value_counts
- Equivalent method on DataFrames. 
 - Examples - >>> index = pd.Index([3, 1, 2, 3, 4, np.nan]) >>> index.value_counts() 3.0 2 1.0 1 2.0 1 4.0 1 Name: count, dtype: int64 - With normalize set to True, returns the relative frequency by dividing all values by the sum of values. - >>> s = pd.Series([3, 1, 2, 3, 4, np.nan]) >>> s.value_counts(normalize=True) 3.0 0.4 1.0 0.2 2.0 0.2 4.0 0.2 Name: proportion, dtype: float64 - bins - Bins can be useful for going from a continuous variable to a categorical variable; instead of counting unique apparitions of values, divide the index in the specified number of half-open bins. - >>> s.value_counts(bins=3) (0.996, 2.0] 2 (2.0, 3.0] 2 (3.0, 4.0] 1 Name: count, dtype: int64 - dropna - With dropna set to False we can also see NaN index values. - >>> s.value_counts(dropna=False) 3.0 2 1.0 1 2.0 1 4.0 1 NaN 1 Name: count, dtype: int64