pandas.CategoricalIndex.map#
- CategoricalIndex.map(mapper, na_action=None)[source]#
- Map values using input an input mapping or function. - Maps the values (their categories, not the codes) of the index to new categories. If the mapping correspondence is one-to-one the result is a - CategoricalIndexwhich has the same order property as the original, otherwise an- Indexis returned.- If a dict or - Seriesis used any unmapped category is mapped to NaN. Note that if this happens an- Indexwill be returned.- Parameters:
- mapperfunction, dict, or Series
- Mapping correspondence. 
 
- Returns:
- pandas.CategoricalIndex or pandas.Index
- Mapped index. 
 
 - See also - Index.map
- Apply a mapping correspondence on an - Index.
- Series.map
- Apply a mapping correspondence on a - Series.
- Series.apply
- Apply more complex functions on a - Series.
 - Examples - >>> idx = pd.CategoricalIndex(['a', 'b', 'c']) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') >>> idx.map(lambda x: x.upper()) CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=False, dtype='category') >>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'}) CategoricalIndex(['first', 'second', 'third'], categories=['first', 'second', 'third'], ordered=False, dtype='category') - If the mapping is one-to-one the ordering of the categories is preserved: - >>> idx = pd.CategoricalIndex(['a', 'b', 'c'], ordered=True) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=True, dtype='category') >>> idx.map({'a': 3, 'b': 2, 'c': 1}) CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True, dtype='category') - If the mapping is not one-to-one an - Indexis returned:- >>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') - If a dict is used, all unmapped categories are mapped to NaN and the result is an - Index:- >>> idx.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object')