pandas.DataFrame.notna#
- DataFrame.notna()[source]#
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings
''ornumpy.infare not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True). NA values, such as None ornumpy.NaN, get mapped to False values.- Returns:
- DataFrame
Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.
See also
DataFrame.notnullAlias of notna.
DataFrame.isnaBoolean inverse of notna.
DataFrame.dropnaOmit axes labels with missing values.
notnaTop-level notna.
Examples
Show which entries in a DataFrame are not NA.
>>> df = pd.DataFrame(dict(age=[5, 6, np.nan], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker
>>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are not NA.
>>> ser = pd.Series([5, 6, np.nan]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64
>>> ser.notna() 0 True 1 True 2 False dtype: bool