pandas.Series.drop#
- Series.drop(labels=None, *, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')[source]#
- Return Series with specified index labels removed. - Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level. - Parameters:
- labelssingle label or list-like
- Index labels to drop. 
- axis{0 or ‘index’}
- Unused. Parameter needed for compatibility with DataFrame. 
- indexsingle label or list-like
- Redundant for application on Series, but ‘index’ can be used instead of ‘labels’. 
- columnssingle label or list-like
- No change is made to the Series; use ‘index’ or ‘labels’ instead. 
- levelint or level name, optional
- For MultiIndex, level for which the labels will be removed. 
- inplacebool, default False
- If True, do operation inplace and return None. 
- errors{‘ignore’, ‘raise’}, default ‘raise’
- If ‘ignore’, suppress error and only existing labels are dropped. 
 
- Returns:
- Series or None
- Series with specified index labels removed or None if - inplace=True.
 
- Raises:
- KeyError
- If none of the labels are found in the index. 
 
 - See also - Series.reindex
- Return only specified index labels of Series. 
- Series.dropna
- Return series without null values. 
- Series.drop_duplicates
- Return Series with duplicate values removed. 
- DataFrame.drop
- Drop specified labels from rows or columns. 
 - Examples - >>> s = pd.Series(data=np.arange(3), index=['A', 'B', 'C']) >>> s A 0 B 1 C 2 dtype: int64 - Drop labels B en C - >>> s.drop(labels=['B', 'C']) A 0 dtype: int64 - Drop 2nd level label in MultiIndex Series - >>> midx = pd.MultiIndex(levels=[['llama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], ... index=midx) >>> s llama speed 45.0 weight 200.0 length 1.2 cow speed 30.0 weight 250.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 dtype: float64 - >>> s.drop(labels='weight', level=1) llama speed 45.0 length 1.2 cow speed 30.0 length 1.5 falcon speed 320.0 length 0.3 dtype: float64