pandas.Series.unique#
- Series.unique()[source]#
- Return unique values of Series object. - Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort. - Returns:
- ndarray or ExtensionArray
- The unique values returned as a NumPy array. See Notes. 
 
 - See also - Series.drop_duplicates
- Return Series with duplicate values removed. 
- unique
- Top-level unique method for any 1-d array-like object. 
- Index.unique
- Return Index with unique values from an Index object. 
 - Notes - Returns the unique values as a NumPy array. In case of an extension-array backed Series, a new - ExtensionArrayof that type with just the unique values is returned. This includes- Categorical 
- Period 
- Datetime with Timezone 
- Datetime without Timezone 
- Timedelta 
- Interval 
- Sparse 
- IntegerNA 
 - See Examples section. - Examples - >>> pd.Series([2, 1, 3, 3], name='A').unique() array([2, 1, 3]) - >>> pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique() <DatetimeArray> ['2016-01-01 00:00:00'] Length: 1, dtype: datetime64[ns] - >>> pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern') ... for _ in range(3)]).unique() <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] - An Categorical will return categories in the order of appearance and with the same dtype. - >>> pd.Series(pd.Categorical(list('baabc'))).unique() ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] >>> pd.Series(pd.Categorical(list('baabc'), categories=list('abc'), ... ordered=True)).unique() ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c']