pandas.Series.dt.to_pydatetime#
- Series.dt.to_pydatetime()[source]#
- Return the data as an array of - datetime.datetimeobjects.- Deprecated since version 2.1.0: The current behavior of dt.to_pydatetime is deprecated. In a future version this will return a Series containing python datetime objects instead of a ndarray. - Timezone information is retained if present. - Warning - Python’s datetime uses microsecond resolution, which is lower than pandas (nanosecond). The values are truncated. - Returns:
- numpy.ndarray
- Object dtype array containing native Python datetime objects. 
 
 - See also - datetime.datetime
- Standard library value for a datetime. 
 - Examples - >>> s = pd.Series(pd.date_range('20180310', periods=2)) >>> s 0 2018-03-10 1 2018-03-11 dtype: datetime64[ns] - >>> s.dt.to_pydatetime() array([datetime.datetime(2018, 3, 10, 0, 0), datetime.datetime(2018, 3, 11, 0, 0)], dtype=object) - pandas’ nanosecond precision is truncated to microseconds. - >>> s = pd.Series(pd.date_range('20180310', periods=2, freq='ns')) >>> s 0 2018-03-10 00:00:00.000000000 1 2018-03-10 00:00:00.000000001 dtype: datetime64[ns] - >>> s.dt.to_pydatetime() array([datetime.datetime(2018, 3, 10, 0, 0), datetime.datetime(2018, 3, 10, 0, 0)], dtype=object)