pandas.Series.median#
- Series.median(axis=0, skipna=True, numeric_only=False, **kwargs)[source]#
- Return the median of the values over the requested axis. - Parameters:
- axis{index (0)}
- Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. - For DataFrames, specifying - axis=Nonewill apply the aggregation across both axes.- Added in version 2.0.0. 
- skipnabool, default True
- Exclude NA/null values when computing the result. 
- numeric_onlybool, default False
- Include only float, int, boolean columns. Not implemented for Series. 
- **kwargs
- Additional keyword arguments to be passed to the function. 
 
- Returns:
- scalar or scalar
 
 - Examples - >>> s = pd.Series([1, 2, 3]) >>> s.median() 2.0 - With a DataFrame - >>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.median() a 1.5 b 2.5 dtype: float64 - Using axis=1 - >>> df.median(axis=1) tiger 1.5 zebra 2.5 dtype: float64 - In this case, numeric_only should be set to True to avoid getting an error. - >>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.median(numeric_only=True) a 1.5 dtype: float64