pandas.Series.set_flags#
- Series.set_flags(*, copy=False, allows_duplicate_labels=None)[source]#
- Return a new object with updated flags. - Parameters:
- copybool, default False
- Specify if a copy of the object should be made. - Note - The copy keyword will change behavior in pandas 3.0. Copy-on-Write will be enabled by default, which means that all methods with a copy keyword will use a lazy copy mechanism to defer the copy and ignore the copy keyword. The copy keyword will be removed in a future version of pandas. - You can already get the future behavior and improvements through enabling copy on write - pd.options.mode.copy_on_write = True
- allows_duplicate_labelsbool, optional
- Whether the returned object allows duplicate labels. 
 
- Returns:
- Series or DataFrame
- The same type as the caller. 
 
 - See also - DataFrame.attrs
- Global metadata applying to this dataset. 
- DataFrame.flags
- Global flags applying to this object. 
 - Notes - This method returns a new object that’s a view on the same data as the input. Mutating the input or the output values will be reflected in the other. - This method is intended to be used in method chains. - “Flags” differ from “metadata”. Flags reflect properties of the pandas object (the Series or DataFrame). Metadata refer to properties of the dataset, and should be stored in - DataFrame.attrs.- Examples - >>> df = pd.DataFrame({"A": [1, 2]}) >>> df.flags.allows_duplicate_labels True >>> df2 = df.set_flags(allows_duplicate_labels=False) >>> df2.flags.allows_duplicate_labels False