pandas.Series.first_valid_index#
- Series.first_valid_index()[source]#
- Return index for first non-NA value or None, if no non-NA value is found. - Returns:
- type of index
 
 - Examples - For Series: - >>> s = pd.Series([None, 3, 4]) >>> s.first_valid_index() 1 >>> s.last_valid_index() 2 - >>> s = pd.Series([None, None]) >>> print(s.first_valid_index()) None >>> print(s.last_valid_index()) None - If all elements in Series are NA/null, returns None. - >>> s = pd.Series() >>> print(s.first_valid_index()) None >>> print(s.last_valid_index()) None - If Series is empty, returns None. - For DataFrame: - >>> df = pd.DataFrame({'A': [None, None, 2], 'B': [None, 3, 4]}) >>> df A B 0 NaN NaN 1 NaN 3.0 2 2.0 4.0 >>> df.first_valid_index() 1 >>> df.last_valid_index() 2 - >>> df = pd.DataFrame({'A': [None, None, None], 'B': [None, None, None]}) >>> df A B 0 None None 1 None None 2 None None >>> print(df.first_valid_index()) None >>> print(df.last_valid_index()) None - If all elements in DataFrame are NA/null, returns None. - >>> df = pd.DataFrame() >>> df Empty DataFrame Columns: [] Index: [] >>> print(df.first_valid_index()) None >>> print(df.last_valid_index()) None - If DataFrame is empty, returns None.