pandas.Series.isnull#
- Series.isnull()[source]#
- Series.isnull is an alias for Series.isna. - Detect missing values. - Return a boolean same-sized object indicating if the values are NA. NA values, such as None or - numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings- ''or- numpy.infare not considered NA values (unless you set- pandas.options.mode.use_inf_as_na = True).- Returns:
- Series
- Mask of bool values for each element in Series that indicates whether an element is an NA value. 
 
 - See also - Series.isnull
- Alias of isna. 
- Series.notna
- Boolean inverse of isna. 
- Series.dropna
- Omit axes labels with missing values. 
- isna
- Top-level isna. 
 - Examples - Show which entries in a DataFrame are NA. - >>> df = pd.DataFrame(dict(age=[5, 6, np.nan], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker - >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False - Show which entries in a Series are NA. - >>> ser = pd.Series([5, 6, np.nan]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 - >>> ser.isna() 0 False 1 False 2 True dtype: bool