pandas.core.window.ewm.ExponentialMovingWindow.cov#
- ExponentialMovingWindow.cov(other=None, pairwise=None, bias=False, numeric_only=False)[source]#
- Calculate the ewm (exponential weighted moment) sample covariance. - Parameters:
- otherSeries or DataFrame , optional
- If not supplied then will default to self and produce pairwise output. 
- pairwisebool, default None
- If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. 
- biasbool, default False
- Use a standard estimation bias correction. 
- numeric_onlybool, default False
- Include only float, int, boolean columns. - Added in version 1.5.0. 
 
- Returns:
- Series or DataFrame
- Return type is the same as the original object with - np.float64dtype.
 
 - See also - pandas.Series.ewm
- Calling ewm with Series data. 
- pandas.DataFrame.ewm
- Calling ewm with DataFrames. 
- pandas.Series.cov
- Aggregating cov for Series. 
- pandas.DataFrame.cov
- Aggregating cov for DataFrame. 
 - Examples - >>> ser1 = pd.Series([1, 2, 3, 4]) >>> ser2 = pd.Series([10, 11, 13, 16]) >>> ser1.ewm(alpha=.2).cov(ser2) 0 NaN 1 0.500000 2 1.524590 3 3.408836 dtype: float64