pandas.core.window.expanding.Expanding.cov#
- Expanding.cov(other=None, pairwise=None, ddof=1, numeric_only=False)[source]#
- Calculate the expanding sample covariance. - Parameters:
- otherSeries or DataFrame, optional
- If not supplied then will default to self and produce pairwise output. 
- pairwisebool, default None
- If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. 
- ddofint, default 1
- Delta Degrees of Freedom. The divisor used in calculations is - N - ddof, where- Nrepresents the number of elements.
- numeric_onlybool, default False
- Include only float, int, boolean columns. - Added in version 1.5.0. 
 
- Returns:
- Series or DataFrame
- Return type is the same as the original object with - np.float64dtype.
 
 - See also - pandas.Series.expanding
- Calling expanding with Series data. 
- pandas.DataFrame.expanding
- Calling expanding with DataFrames. 
- pandas.Series.cov
- Aggregating cov for Series. 
- pandas.DataFrame.cov
- Aggregating cov for DataFrame. 
 - Examples - >>> ser1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) >>> ser2 = pd.Series([10, 11, 13, 16], index=['a', 'b', 'c', 'd']) >>> ser1.expanding().cov(ser2) a NaN b 0.500000 c 1.500000 d 3.333333 dtype: float64