pandas.core.window.rolling.Rolling.cov#
- Rolling.cov(other=None, pairwise=None, ddof=1, numeric_only=False)[source]#
- Calculate the rolling sample covariance. - Parameters:
- otherSeries or DataFrame, optional
- If not supplied then will default to self and produce pairwise output. 
- pairwisebool, default None
- If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. 
- ddofint, default 1
- Delta Degrees of Freedom. The divisor used in calculations is - N - ddof, where- Nrepresents the number of elements.
- numeric_onlybool, default False
- Include only float, int, boolean columns. - Added in version 1.5.0. 
 
- Returns:
- Series or DataFrame
- Return type is the same as the original object with - np.float64dtype.
 
 - See also - pandas.Series.rolling
- Calling rolling with Series data. 
- pandas.DataFrame.rolling
- Calling rolling with DataFrames. 
- pandas.Series.cov
- Aggregating cov for Series. 
- pandas.DataFrame.cov
- Aggregating cov for DataFrame. 
 - Examples - >>> ser1 = pd.Series([1, 2, 3, 4]) >>> ser2 = pd.Series([1, 4, 5, 8]) >>> ser1.rolling(2).cov(ser2) 0 NaN 1 1.5 2 0.5 3 1.5 dtype: float64