pandas.core.window.rolling.Rolling.mean#
- Rolling.mean(numeric_only=False, engine=None, engine_kwargs=None)[source]#
- Calculate the rolling mean. - Parameters:
- numeric_onlybool, default False
- Include only float, int, boolean columns. - Added in version 1.5.0. 
- enginestr, default None
- 'cython': Runs the operation through C-extensions from cython.
- 'numba': Runs the operation through JIT compiled code from numba.
- None: Defaults to- 'cython'or globally setting- compute.use_numba- Added in version 1.3.0. 
 
- engine_kwargsdict, default None
- For - 'cython'engine, there are no accepted- engine_kwargs
- For - 'numba'engine, the engine can accept- nopython,- nogiland- paralleldictionary keys. The values must either be- Trueor- False. The default- engine_kwargsfor the- 'numba'engine is- {'nopython': True, 'nogil': False, 'parallel': False}- Added in version 1.3.0. 
 
 
- Returns:
- Series or DataFrame
- Return type is the same as the original object with - np.float64dtype.
 
 - See also - pandas.Series.rolling
- Calling rolling with Series data. 
- pandas.DataFrame.rolling
- Calling rolling with DataFrames. 
- pandas.Series.mean
- Aggregating mean for Series. 
- pandas.DataFrame.mean
- Aggregating mean for DataFrame. 
 - Notes - See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine. - Examples - The below examples will show rolling mean calculations with window sizes of two and three, respectively. - >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).mean() 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64 - >>> s.rolling(3).mean() 0 NaN 1 NaN 2 2.0 3 3.0 dtype: float64