pandas.core.window.rolling.Window.mean#
- Window.mean(numeric_only=False, **kwargs)[source]#
- Calculate the rolling weighted window mean. - Parameters:
- numeric_onlybool, default False
- Include only float, int, boolean columns. - Added in version 1.5.0. 
- **kwargs
- Keyword arguments to configure the - SciPyweighted window type.
 
- Returns:
- Series or DataFrame
- Return type is the same as the original object with - np.float64dtype.
 
 - See also - pandas.Series.rolling
- Calling rolling with Series data. 
- pandas.DataFrame.rolling
- Calling rolling with DataFrames. 
- pandas.Series.mean
- Aggregating mean for Series. 
- pandas.DataFrame.mean
- Aggregating mean for DataFrame. 
 - Examples - >>> ser = pd.Series([0, 1, 5, 2, 8]) - To get an instance of - Windowwe need to pass the parameter win_type.- >>> type(ser.rolling(2, win_type='gaussian')) <class 'pandas.core.window.rolling.Window'> - In order to use the SciPy Gaussian window we need to provide the parameters M and std. The parameter M corresponds to 2 in our example. We pass the second parameter std as a parameter of the following method: - >>> ser.rolling(2, win_type='gaussian').mean(std=3) 0 NaN 1 0.5 2 3.0 3 3.5 4 5.0 dtype: float64