pandas.core.window.rolling.Rolling.kurt#
- Rolling.kurt(numeric_only=False)[source]#
- Calculate the rolling Fisher’s definition of kurtosis without bias. - Parameters:
- numeric_onlybool, default False
- Include only float, int, boolean columns. - Added in version 1.5.0. 
 
- Returns:
- Series or DataFrame
- Return type is the same as the original object with - np.float64dtype.
 
 - See also - scipy.stats.kurtosis
- Reference SciPy method. 
- pandas.Series.rolling
- Calling rolling with Series data. 
- pandas.DataFrame.rolling
- Calling rolling with DataFrames. 
- pandas.Series.kurt
- Aggregating kurt for Series. 
- pandas.DataFrame.kurt
- Aggregating kurt for DataFrame. 
 - Notes - A minimum of four periods is required for the calculation. - Examples - The example below will show a rolling calculation with a window size of four matching the equivalent function call using scipy.stats. - >>> arr = [1, 2, 3, 4, 999] >>> import scipy.stats >>> print(f"{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}") -1.200000 >>> print(f"{scipy.stats.kurtosis(arr[1:], bias=False):.6f}") 3.999946 >>> s = pd.Series(arr) >>> s.rolling(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 3.999946 dtype: float64