pandas.core.window.expanding.Expanding.quantile#
- Expanding.quantile(q, interpolation='linear', numeric_only=False)[source]#
- Calculate the expanding quantile. - Parameters:
- quantilefloat
- Quantile to compute. 0 <= quantile <= 1. - Deprecated since version 2.1.0: This will be renamed to ‘q’ in a future version. 
- interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}
- This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j: - linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j. 
- lower: i. 
- higher: j. 
- nearest: i or j whichever is nearest. 
- midpoint: (i + j) / 2. 
 
- numeric_onlybool, default False
- Include only float, int, boolean columns. - Added in version 1.5.0. 
 
- Returns:
- Series or DataFrame
- Return type is the same as the original object with - np.float64dtype.
 
 - See also - pandas.Series.expanding
- Calling expanding with Series data. 
- pandas.DataFrame.expanding
- Calling expanding with DataFrames. 
- pandas.Series.quantile
- Aggregating quantile for Series. 
- pandas.DataFrame.quantile
- Aggregating quantile for DataFrame. 
 - Examples - >>> ser = pd.Series([1, 2, 3, 4, 5, 6], index=['a', 'b', 'c', 'd', 'e', 'f']) >>> ser.expanding(min_periods=4).quantile(.25) a NaN b NaN c NaN d 1.75 e 2.00 f 2.25 dtype: float64