pandas.Series.kurtosis#
- Series.kurtosis(*, axis=0, skipna=True, numeric_only=False, **kwargs)[source]#
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
- Parameters:
- axis{index (0)}
Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
For DataFrames, specifying
axis=None
will apply the aggregation across both axes.Added in version 2.0.0.
- skipnabool, default True
Exclude NA/null values when computing the result.
- numeric_onlybool, default False
Include only float, int, boolean columns.
- **kwargs
Additional keyword arguments to be passed to the function.
- Returns:
- scalar
Unbiased kurtosis.
See also
Series.skew
Return unbiased skew over requested axis.
Series.var
Return unbiased variance over requested axis.
Series.std
Return unbiased standard deviation over requested axis.
Examples
>>> s = pd.Series([1, 2, 2, 3], index=["cat", "dog", "dog", "mouse"]) >>> s cat 1 dog 2 dog 2 mouse 3 dtype: int64 >>> s.kurt() 1.5