pandas.Series.map#
- Series.map(arg, na_action=None, **kwargs)[source]#
Map values of Series according to an input mapping or function.
Used for substituting each value in a Series with another value, that may be derived from a function, a
dict
or aSeries
.- Parameters:
- argfunction, collections.abc.Mapping subclass or Series
Mapping correspondence.
- na_action{None, ‘ignore’}, default None
If ‘ignore’, propagate NaN values, without passing them to the mapping correspondence.
- **kwargs
Additional keyword arguments to pass as keywords arguments to arg.
Added in version 3.0.0.
- Returns:
- Series
Same index as caller.
See also
Series.apply
For applying more complex functions on a Series.
Series.replace
Replace values given in to_replace with value.
DataFrame.apply
Apply a function row-/column-wise.
DataFrame.map
Apply a function elementwise on a whole DataFrame.
Notes
When
arg
is a dictionary, values in Series that are not in the dictionary (as keys) are converted toNaN
. However, if the dictionary is adict
subclass that defines__missing__
(i.e. provides a method for default values), then this default is used rather thanNaN
.Examples
>>> s = pd.Series(["cat", "dog", np.nan, "rabbit"]) >>> s 0 cat 1 dog 2 NaN 3 rabbit dtype: object
map
accepts adict
or aSeries
. Values that are not found in thedict
are converted toNaN
, unless the dict has a default value (e.g.defaultdict
):>>> s.map({"cat": "kitten", "dog": "puppy"}) 0 kitten 1 puppy 2 NaN 3 NaN dtype: object
It also accepts a function:
>>> s.map("I am a {}".format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit dtype: object
To avoid applying the function to missing values (and keep them as
NaN
)na_action='ignore'
can be used:>>> s.map("I am a {}".format, na_action="ignore") 0 I am a cat 1 I am a dog 2 NaN 3 I am a rabbit dtype: object