pandas.api.typing.DataFrameGroupBy.bfill#
- DataFrameGroupBy.bfill(limit=None)[source]#
Backward fill the values.
- Parameters:
- limitint, optional
Limit of how many values to fill.
- Returns:
- Series or DataFrame
Object with missing values filled.
See also
Series.bfillBackward fill the missing values in the dataset.
DataFrame.bfillBackward fill the missing values in the dataset.
Series.fillnaFill NaN values of a Series.
DataFrame.fillnaFill NaN values of a DataFrame.
Examples
With Series:
>>> index = ["Falcon", "Falcon", "Parrot", "Parrot", "Parrot"] >>> s = pd.Series([None, 1, None, None, 3], index=index) >>> s Falcon NaN Falcon 1.0 Parrot NaN Parrot NaN Parrot 3.0 dtype: float64 >>> s.groupby(level=0).bfill() Falcon 1.0 Falcon 1.0 Parrot 3.0 Parrot 3.0 Parrot 3.0 dtype: float64 >>> s.groupby(level=0).bfill(limit=1) Falcon 1.0 Falcon 1.0 Parrot NaN Parrot 3.0 Parrot 3.0 dtype: float64
With DataFrame:
>>> df = pd.DataFrame( ... {"A": [1, None, None, None, 4], "B": [None, None, 5, None, 7]}, ... index=index, ... ) >>> df A B Falcon 1.0 NaN Falcon NaN NaN Parrot NaN 5.0 Parrot NaN NaN Parrot 4.0 7.0 >>> df.groupby(level=0).bfill() A B Falcon 1.0 NaN Falcon NaN NaN Parrot 4.0 5.0 Parrot 4.0 7.0 Parrot 4.0 7.0 >>> df.groupby(level=0).bfill(limit=1) A B Falcon 1.0 NaN Falcon NaN NaN Parrot NaN 5.0 Parrot 4.0 7.0 Parrot 4.0 7.0