pandas.Series.cummin#

Series.cummin(axis=0, skipna=True, *args, **kwargs)[source]#

Return cumulative minimum over a Series.

Returns a Series of the same size containing the cumulative minimum.

Parameters:
axis{0 or ‘index’}, default 0

This parameter is unused and defaults to 0.

skipnabool, default True

If the entire series is NA, the result will be NA.

*args, **kwargs

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:
Series

Return cumulative minimum of the Series.

See also

core.window.expanding.Expanding.min

Similar functionality but ignores NaN values.

Series.min

Return the minimum value of the Series.

Series.cummax

Return cumulative maximum.

Series.cumsum

Return cumulative sum.

Series.cumprod

Return cumulative product.

Examples

>>> s = pd.Series([2, np.nan, 5, -1, 0])
>>> s
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummin()
0    2.0
1    NaN
2    2.0
3   -1.0
4   -1.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummin(skipna=False)
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64