pandas.core.groupby.DataFrameGroupBy.corrwith#
- DataFrameGroupBy.corrwith(other, axis=<no_default>, drop=False, method='pearson', numeric_only=False)[source]#
- Compute pairwise correlation. - Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. - Parameters:
- otherDataFrame, Series
- Object with which to compute correlations. 
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
- The axis to use. 0 or ‘index’ to compute row-wise, 1 or ‘columns’ for column-wise. 
- dropbool, default False
- Drop missing indices from result. 
- method{‘pearson’, ‘kendall’, ‘spearman’} or callable
- Method of correlation: - pearson : standard correlation coefficient 
- kendall : Kendall Tau correlation coefficient 
- spearman : Spearman rank correlation 
- callable: callable with input two 1d ndarrays
- and returning a float. 
 
 
- numeric_onlybool, default False
- Include only float, int or boolean data. - Added in version 1.5.0. - Changed in version 2.0.0: The default value of - numeric_onlyis now- False.
 
- Returns:
- Series
- Pairwise correlations. 
 
 - See also - DataFrame.corr
- Compute pairwise correlation of columns. 
 - Examples - >>> index = ["a", "b", "c", "d", "e"] >>> columns = ["one", "two", "three", "four"] >>> df1 = pd.DataFrame(np.arange(20).reshape(5, 4), index=index, columns=columns) >>> df2 = pd.DataFrame(np.arange(16).reshape(4, 4), index=index[:4], columns=columns) >>> df1.corrwith(df2) one 1.0 two 1.0 three 1.0 four 1.0 dtype: float64 - >>> df2.corrwith(df1, axis=1) a 1.0 b 1.0 c 1.0 d 1.0 e NaN dtype: float64