pandas.core.groupby.SeriesGroupBy.std#
- SeriesGroupBy.std(ddof=1, engine=None, engine_kwargs=None, numeric_only=False)[source]#
- Compute standard deviation of groups, excluding missing values. - For multiple groupings, the result index will be a MultiIndex. - Parameters:
- ddofint, default 1
- Degrees of freedom. 
- enginestr, default None
- 'cython': Runs the operation through C-extensions from cython.
- 'numba': Runs the operation through JIT compiled code from numba.
- None: Defaults to- 'cython'or globally setting- compute.use_numba
 - Added in version 1.4.0. 
- engine_kwargsdict, default None
- For - 'cython'engine, there are no accepted- engine_kwargs
- For - 'numba'engine, the engine can accept- nopython,- nogiland- paralleldictionary keys. The values must either be- Trueor- False. The default- engine_kwargsfor the- 'numba'engine is- {{'nopython': True, 'nogil': False, 'parallel': False}}
 - Added in version 1.4.0. 
- numeric_onlybool, default False
- Include only float, int or boolean data. - Added in version 1.5.0. - Changed in version 2.0.0: numeric_only now defaults to - False.
 
- Returns:
- Series or DataFrame
- Standard deviation of values within each group. 
 
 - See also - Series.groupby
- Apply a function groupby to a Series. 
- DataFrame.groupby
- Apply a function groupby to each row or column of a DataFrame. 
 - Examples - For SeriesGroupBy: - >>> lst = ['a', 'a', 'a', 'b', 'b', 'b'] >>> ser = pd.Series([7, 2, 8, 4, 3, 3], index=lst) >>> ser a 7 a 2 a 8 b 4 b 3 b 3 dtype: int64 >>> ser.groupby(level=0).std() a 3.21455 b 0.57735 dtype: float64 - For DataFrameGroupBy: - >>> data = {'a': [1, 3, 5, 7, 7, 8, 3], 'b': [1, 4, 8, 4, 4, 2, 1]} >>> df = pd.DataFrame(data, index=['dog', 'dog', 'dog', ... 'mouse', 'mouse', 'mouse', 'mouse']) >>> df a b dog 1 1 dog 3 4 dog 5 8 mouse 7 4 mouse 7 4 mouse 8 2 mouse 3 1 >>> df.groupby(level=0).std() a b dog 2.000000 3.511885 mouse 2.217356 1.500000