pandas.core.groupby.SeriesGroupBy.__iter__#
- SeriesGroupBy.__iter__()[source]#
- Groupby iterator. - Returns:
- Generator yielding sequence of (name, subsetted object)
- for each group
 
 - Examples - For SeriesGroupBy: - >>> lst = ['a', 'a', 'b'] >>> ser = pd.Series([1, 2, 3], index=lst) >>> ser a 1 a 2 b 3 dtype: int64 >>> for x, y in ser.groupby(level=0): ... print(f'{x}\n{y}\n') a a 1 a 2 dtype: int64 b b 3 dtype: int64 - For DataFrameGroupBy: - >>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]] >>> df = pd.DataFrame(data, columns=["a", "b", "c"]) >>> df a b c 0 1 2 3 1 1 5 6 2 7 8 9 >>> for x, y in df.groupby(by=["a"]): ... print(f'{x}\n{y}\n') (1,) a b c 0 1 2 3 1 1 5 6 (7,) a b c 2 7 8 9 - For Resampler: - >>> ser = pd.Series([1, 2, 3, 4], index=pd.DatetimeIndex( ... ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15'])) >>> ser 2023-01-01 1 2023-01-15 2 2023-02-01 3 2023-02-15 4 dtype: int64 >>> for x, y in ser.resample('MS'): ... print(f'{x}\n{y}\n') 2023-01-01 00:00:00 2023-01-01 1 2023-01-15 2 dtype: int64 2023-02-01 00:00:00 2023-02-01 3 2023-02-15 4 dtype: int64