pandas.core.groupby.DataFrameGroupBy.skew#
- DataFrameGroupBy.skew(axis=<no_default>, skipna=True, numeric_only=False, **kwargs)[source]#
- Return unbiased skew within groups. - Normalized by N-1. - Parameters:
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
- Axis for the function to be applied on. - Specifying - axis=Nonewill apply the aggregation across both axes.- Added in version 2.0.0. - Deprecated since version 2.1.0: For axis=1, operate on the underlying object instead. Otherwise the axis keyword is not necessary. 
- skipnabool, default True
- Exclude NA/null values when computing the result. 
- numeric_onlybool, default False
- Include only float, int, boolean columns. 
- **kwargs
- Additional keyword arguments to be passed to the function. 
 
- Returns:
- DataFrame
 
 - See also - DataFrame.skew
- Return unbiased skew over requested axis. 
 - Examples - >>> arrays = [['falcon', 'parrot', 'cockatoo', 'kiwi', ... 'lion', 'monkey', 'rabbit'], ... ['bird', 'bird', 'bird', 'bird', ... 'mammal', 'mammal', 'mammal']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('name', 'class')) >>> df = pd.DataFrame({'max_speed': [389.0, 24.0, 70.0, np.nan, ... 80.5, 21.5, 15.0]}, ... index=index) >>> df max_speed name class falcon bird 389.0 parrot bird 24.0 cockatoo bird 70.0 kiwi bird NaN lion mammal 80.5 monkey mammal 21.5 rabbit mammal 15.0 >>> gb = df.groupby(["class"]) >>> gb.skew() max_speed class bird 1.628296 mammal 1.669046 >>> gb.skew(skipna=False) max_speed class bird NaN mammal 1.669046