pandas.core.groupby.DataFrameGroupBy.first#
- DataFrameGroupBy.first(numeric_only=False, min_count=-1, skipna=True)[source]#
- Compute the first entry of each column within each group. - Defaults to skipping NA elements. - Parameters:
- numeric_onlybool, default False
- Include only float, int, boolean columns. 
- min_countint, default -1
- The required number of valid values to perform the operation. If fewer than - min_countvalid values are present the result will be NA.
- skipnabool, default True
- Exclude NA/null values. If an entire row/column is NA, the result will be NA. - Added in version 2.2.1. 
 
- Returns:
- Series or DataFrame
- First values within each group. 
 
 - See also - DataFrame.groupby
- Apply a function groupby to each row or column of a DataFrame. 
- pandas.core.groupby.DataFrameGroupBy.last
- Compute the last non-null entry of each column. 
- pandas.core.groupby.DataFrameGroupBy.nth
- Take the nth row from each group. 
 - Examples - >>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[None, 5, 6], C=[1, 2, 3], ... D=['3/11/2000', '3/12/2000', '3/13/2000'])) >>> df['D'] = pd.to_datetime(df['D']) >>> df.groupby("A").first() B C D A 1 5.0 1 2000-03-11 3 6.0 3 2000-03-13 >>> df.groupby("A").first(min_count=2) B C D A 1 NaN 1.0 2000-03-11 3 NaN NaN NaT >>> df.groupby("A").first(numeric_only=True) B C A 1 5.0 1 3 6.0 3