pandas.Timestamp.ceil#
- Timestamp.ceil(freq, ambiguous='raise', nonexistent='raise')#
Return a new Timestamp ceiled to this resolution.
- Parameters:
- freqstr
Frequency string indicating the ceiling resolution.
- ambiguousbool or {‘raise’, ‘NaT’}, default ‘raise’
The behavior is as follows:
bool contains flags to determine if time is dst or not (note that this flag is only applicable for ambiguous fall dst dates).
‘NaT’ will return NaT for an ambiguous time.
‘raise’ will raise a ValueError for an ambiguous time.
- nonexistent{‘raise’, ‘shift_forward’, ‘shift_backward’, ‘NaT’, timedelta}, default ‘raise’
A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST.
‘shift_forward’ will shift the nonexistent time forward to the closest existing time.
‘shift_backward’ will shift the nonexistent time backward to the closest existing time.
‘NaT’ will return NaT where there are nonexistent times.
timedelta objects will shift nonexistent times by the timedelta.
‘raise’ will raise a ValueError if there are nonexistent times.
- Raises:
- ValueError if the freq cannot be converted.
See also
Timestamp.floor
Round down a Timestamp to the specified resolution.
Timestamp.round
Round a Timestamp to the specified resolution.
Series.dt.ceil
Ceil the datetime values in a Series.
Notes
If the Timestamp has a timezone, ceiling will take place relative to the local (“wall”) time and re-localized to the same timezone. When ceiling near daylight savings time, use
nonexistent
andambiguous
to control the re-localization behavior.Examples
Create a timestamp object:
>>> ts = pd.Timestamp('2020-03-14T15:32:52.192548651')
A timestamp can be ceiled using multiple frequency units:
>>> ts.ceil(freq='h') # hour Timestamp('2020-03-14 16:00:00')
>>> ts.ceil(freq='min') # minute Timestamp('2020-03-14 15:33:00')
>>> ts.ceil(freq='s') # seconds Timestamp('2020-03-14 15:32:53')
>>> ts.ceil(freq='us') # microseconds Timestamp('2020-03-14 15:32:52.192549')
freq
can also be a multiple of a single unit, like ‘5min’ (i.e. 5 minutes):>>> ts.ceil(freq='5min') Timestamp('2020-03-14 15:35:00')
or a combination of multiple units, like ‘1h30min’ (i.e. 1 hour and 30 minutes):
>>> ts.ceil(freq='1h30min') Timestamp('2020-03-14 16:30:00')
Analogous for
pd.NaT
:>>> pd.NaT.ceil() NaT
When rounding near a daylight savings time transition, use
ambiguous
ornonexistent
to control how the timestamp should be re-localized.>>> ts_tz = pd.Timestamp("2021-10-31 01:30:00").tz_localize("Europe/Amsterdam")
>>> ts_tz.ceil("h", ambiguous=False) Timestamp('2021-10-31 02:00:00+0100', tz='Europe/Amsterdam')
>>> ts_tz.ceil("h", ambiguous=True) Timestamp('2021-10-31 02:00:00+0200', tz='Europe/Amsterdam')