pandas.api.types.is_dtype_equal#

pandas.api.types.is_dtype_equal(source, target)[source]#

Check if two dtypes are equal.

This function compares two dtype specifications, handling both NumPy dtypes and pandas ExtensionDtypes. String representations of dtypes are also supported and will be resolved before comparison.

Parameters:
sourcetype or str

The first dtype to compare.

targettype or str

The second dtype to compare.

Returns:
boolean

Whether or not the two dtypes are equal.

See also

api.types.is_categorical_dtype

Check whether the provided array or dtype is of the Categorical dtype.

api.types.is_string_dtype

Check whether the provided array or dtype is of the string dtype.

api.types.is_object_dtype

Check whether an array-like or dtype is of the object dtype.

Examples

>>> from pandas.api.types import is_dtype_equal
>>> is_dtype_equal(int, float)
False
>>> is_dtype_equal("int", int)
True
>>> is_dtype_equal(object, "category")
False
>>> from pandas.api.types import CategoricalDtype
>>> is_dtype_equal(CategoricalDtype(), "category")
True
>>> from pandas.api.types import DatetimeTZDtype
>>> is_dtype_equal(DatetimeTZDtype(tz="UTC"), "datetime64")
False