pandas.DataFrame.where#

DataFrame.where(cond, other=nan, *, inplace=False, axis=None, level=None)[source]#

Replace values where the condition is False.

Parameters:
condbool Series/DataFrame, array-like, or callable

Where cond is True, keep the original value. Where False, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).

otherscalar, Series/DataFrame, or callable

Entries where cond is False are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it). If not specified, entries will be filled with the corresponding NULL value (np.nan for numpy dtypes, pd.NA for extension dtypes).

inplacebool, default False

Whether to perform the operation in place on the data.

axisint, default None

Alignment axis if needed. For Series this parameter is unused and defaults to 0.

levelint, default None

Alignment level if needed.

Returns:
Series or DataFrame or None

When applied to a Series, the function will return a Series, and when applied to a DataFrame, it will return a DataFrame; if inplace=True, it will return None.

See also

DataFrame.mask()

Return an object of same shape as caller.

Series.mask()

Return an object of same shape as caller.

Notes

The where method is an application of the if-then idiom. For each element in the caller, if cond is True the element is used; otherwise the corresponding element from other is used. If the axis of other does not align with axis of cond Series/DataFrame, the values of cond on misaligned index positions will be filled with False.

The signature for Series.where() or DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the where documentation in indexing.

The dtype of the object takes precedence. The fill value is casted to the object’s dtype, if this can be done losslessly.

Examples

>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0    NaN
1    1.0
2    2.0
3    3.0
4    4.0
dtype: float64
>>> s.mask(s > 0)
0    0.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64
>>> s = pd.Series(range(5))
>>> t = pd.Series([True, False])
>>> s.where(t, 99)
0     0
1    99
2    99
3    99
4    99
dtype: int64
>>> s.mask(t, 99)
0    99
1     1
2    99
3    99
4    99
dtype: int64
>>> s.where(s > 1, 10)
0    10
1    10
2    2
3    3
4    4
dtype: int64
>>> s.mask(s > 1, 10)
0     0
1     1
2    10
3    10
4    10
dtype: int64
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"])
>>> df
   A  B
0  0  1
1  2  3
2  4  5
3  6  7
4  8  9
>>> m = df % 3 == 0
>>> df.where(m, -df)
   A  B
0  0 -1
1 -2  3
2 -4 -5
3  6 -7
4 -8  9
>>> df.where(m, -df) == np.where(m, df, -df)
      A     B
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True
>>> df.where(m, -df) == df.mask(~m, -df)
      A     B
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True